Skip to main content
Log in

Acid heating treatment of octenyl succinate anhydride starch and its application in Pickering emulsion stability

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Starch-based Pickering emulsions have received much attention recently due to their low cost, biodegradability, and green characteristics. To investigate the effect of acid heat treatment on the physicochemical properties of octenyl succinic anhydride starch (OSAS) and the stability of Pickering emulsion, acid heat treatment of esterified starch with hydrochloric acid was performed to obtain samples with different degrees of treatment and to make Pickering emulsion. The structure of starch particles before and after acid heating treatment was analyzed using scanning electron microscopy and Fourier transform infrared spectroscopy. The stability of the emulsions was evaluated using the emulsion index, droplet size, and zeta potential. The results showed that compared to natural starch, acid heat treatment of esterified starch resulted in increased solubility, darker coloration, greater exposure of reducing ends leading to higher reducing sugar content, and reduced starch orderliness. However, the original granular morphology was still retained. Additionally, based on the emulsification index, droplet size, etc., it can be concluded that acid heat treatment OSAS is more suitable as a Pickering emulsion stabilizer compared to untreated OSAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data available on request from the authors.

References

  1. C.C. Carabin, K. Schroen, Annu. Rev. Food Sci. Technol. (2015). https://doi.org/10.1146/annurev-food-081114-110822

    Article  Google Scholar 

  2. S.J. Ge, L. Xiong, M. Li, J. Liu, J. Yang, R.R. Chang, C.F. Liang, Q.J. Sun, Food Chem. (2017). https://doi.org/10.1016/j.foodchem.2017.04.150

    Article  PubMed  Google Scholar 

  3. D. Meshulam, U. Lesmes, J. Food Funct. (2014). https://doi.org/10.1039/c3fo60380f

    Article  Google Scholar 

  4. Y. Xie, H.B. Liu, Y. Li, J.Q. Tian, X.L. Qin, K.I. Shabani, C. Liao, C. Liu, Food Hydrocoll. (2020). https://doi.org/10.1016/j.foodhyd.2020.105915

    Article  Google Scholar 

  5. N.A. Hadi, A. Marefati, M. Matos, B. Wiege, M. Rayner, Cabohydr. Polym. (2020). https://doi.org/10.1016/j.carbpol.2020.116264

    Article  Google Scholar 

  6. S. Miskeen, E.Y. Park, J.Y. Kim, Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.072

    Article  PubMed  Google Scholar 

  7. V. Karma, A.D. Gupta, D.K. Yadav, A.A. Singh, M. Verma, H. Singh, Starch/Stärke. (2022). https://doi.org/10.1002/star.202200025

    Article  Google Scholar 

  8. M.C. Sweedman, M.J. Tizzotti, C. Schäfer, R.G. Gilbert, Cabohydr. Polym. (2013). https://doi.org/10.1016/j.carbpol.2012.09.040

    Article  Google Scholar 

  9. L. Dokić, V. Krstonošić, I. Nikolić, Food Hydrocoll. (2012). https://doi.org/10.1016/j.foodhyd.2012.02.008

    Article  Google Scholar 

  10. T. Yao, Y. Wen, Z. Xu, M.T. Ma, P. Li, C. Brennan, Z.Q. Sui, H. Corke, Int. J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.129

    Article  PubMed  Google Scholar 

  11. W. Zhu, F. Zheng, X. Song, H.T. Ren, H. Gong, Cabohydr. Polym. (2020). https://doi.org/10.1016/j.carbpol.2020.116649

    Article  Google Scholar 

  12. S. Chang, X. Chen, S. Liu, C. Wang, Int. J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.175

    Article  PubMed  Google Scholar 

  13. S. Li, B. Zhang, C. Li, X. Fu, Q. Huang, Food Chem. (2020). https://doi.org/10.1016/j.foodchem.2019.125476

    Article  PubMed  PubMed Central  Google Scholar 

  14. M. Matos, A. Marefati, P. Barrero, M. Rayner, G. Gutiérrez, Food Res. Int. (2021). https://doi.org/10.1016/j.foodres.2020.109837

    Article  PubMed  Google Scholar 

  15. A. Yusoff, B.S. Murray, Food Hydrocoll. (2011). https://doi.org/10.1016/j.foodhyd.2010.05.004

    Article  Google Scholar 

  16. A. Marefati, M. Bertrand, M. Sjöö, P. Dejmek, M. Rayner, Food Hydrocoll. (2017). https://doi.org/10.1016/j.foodhyd.2016.08.043

    Article  Google Scholar 

  17. M. Kurdziel, K. Królikowska, M. Łabanowska, S. Pietrzyk, M. Michalec, Food Chem. (2020). https://doi.org/10.1016/j.foodchem.2020.127242

    Article  PubMed  Google Scholar 

  18. Z. Li, Y. Hong, Z. Gu, Y. Tian, Z.F. Li, F. Cheng, Starch/Stärke. (2014). https://doi.org/10.1002/star.201400108

    Article  Google Scholar 

  19. Y. Pan, Z. Wu, B. Zhang, X.M. Li, R. Meng, H.Q. Chen, Z.Y. Jin, Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2019.05.053

    Article  PubMed  Google Scholar 

  20. X.Y. Song, H. Gong, W. Zhu, J.L. Wang, Y.G. Zhai, S.S. Lin, Int. J. Biol. Macromol. (2022). https://doi.org/10.1016/j.ijbiomac.2022.02.044

    Article  PubMed  PubMed Central  Google Scholar 

  21. Z.Q. Liu, Y. Li, F.J. Cui, L.F. Ping, J.N. Song, Y. Ravee, L.Q. Jin, Y.P. Xue, J.M. Xu, G. Li, Y.J. Wang, Y.G. Zheng, J. Agric. Food Chem. (2008). https://doi.org/10.1021/jf802317q

    Article  PubMed  Google Scholar 

  22. Y. Hong, Z.S. Li, Z.B. Gu, Y. Wang, Y.S. Pang, Starch/Stärke. (2017). https://doi.org/10.1002/star.201600039

    Article  Google Scholar 

  23. M. Han, X.L. Wu, Y. Peng, H.P. Yu, J. Food Process. Preserv. (2022). https://doi.org/10.1111/jfpp.16125

    Article  Google Scholar 

  24. J.P. Chen, J.J. Xiao, Z.Y. Wang, H. Cheng, Y. Zhang, B.B. Lin, L.Q. Qin, Y.J. Bai, Food Chem. (2020). https://doi.org/10.1016/j.foodchem.2020.126491

    Article  PubMed  Google Scholar 

  25. H.N. Kim, K.S. Sandhu, J.H. Lee, H.S. Lim, S.T. Lim, Food Chem. (2010). https://doi.org/10.1016/j.foodchem.2009.08.036

    Article  PubMed  Google Scholar 

  26. K. Jochym, J. Kapusniak, R. Barczynska, K. Śliżewska, J. Sci. Food Agric. (2012). https://doi.org/10.1002/jsfa.4665

    Article  PubMed  Google Scholar 

  27. J.S. Zhang, C. Ran, X.F. Jiang, J.P. Dou, LWT-Food Sci Technol. (2021). https://doi.org/10.1016/j.lwt.2021.112320

    Article  Google Scholar 

  28. Y.J. Han, S.J. Li, J.A. Han, Korean J. Food Sci. Technol. (2017). https://doi.org/10.9721/KJFST.2017.49.1.8

    Article  Google Scholar 

  29. J.A. Han, H.J. Chung, S.T. Lim, Food Hydrocoll. (2019). https://doi.org/10.1016/j.foodhyd.2018.11.014

    Article  Google Scholar 

  30. L. Altuna, M.L. Herrera, M.L. Foresti, Food Hydrocoll. (2018). https://doi.org/10.1016/j.foodhyd.2018.01.032

    Article  Google Scholar 

  31. C.L. Lin, J.H. Lin, H.M. Zeng, Y.H. Wu, Y.H. Chang, Carbohydr. Polym. (2018). https://doi.org/10.1016/j.carbpol.2018.01.087

    Article  PubMed  Google Scholar 

  32. M. Lovera, G. Castro, N. Pires, M. Bastos, M. Araújo, A. Laurentin, R. Moreira, H. Oliveira, Carbohydr. Polym. (2020). https://doi.org/10.1016/j.carbpol.2020.116382

    Article  PubMed  Google Scholar 

  33. A. Fashi, A.F. Delavar, A. Zamani, N. Noshiranzadeh, Food Chem. (2023). https://doi.org/10.1016/j.foodchem.2023.135439

    Article  PubMed  Google Scholar 

  34. R. Remya, A.N. Jyothi, J. Sreekumar, Food Hydrocoll. (2018). https://doi.org/10.1016/j.foodhyd.2018.04.009

    Article  Google Scholar 

  35. B.F. Elásquez, P.A. Bello, M.H. Yee, S.C. Velezmoro, Starch/Stärke. (2019). https://doi.org/10.1002/star.201800101

    Article  Google Scholar 

  36. S.M. Lopez, P.L. Bello, A.E. Agama, R.J. Alvarez, Food Hydrocoll. (2019). https://doi.org/10.1016/j.foodhyd.2019.105212

    Article  Google Scholar 

  37. Y. Bist, Y. Kumar, D.C. Saxena, LWT-Food Sci. Technol. (2022). https://doi.org/10.1016/j.lwt.2022.113329

    Article  Google Scholar 

  38. Y.Y. Zhang, S.Q. Zhang, X.J. Yang, W.T. Wang, X.L. Liu, H.W. Wang, H. Zhang, J. Cereal Sci. (2022). https://doi.org/10.1016/j.jcs.2022.103500

    Article  Google Scholar 

  39. L.E. Low, S.P. Siva, Y.K. Ho, E.S. Chan, B.T. Tey, Adv. Colloid Interface Sci. (2020). https://doi.org/10.1016/j.cis.2020.102117

    Article  PubMed  Google Scholar 

  40. C. Yan, D.J. Mcclements, L. Zou, W. Liu, Food Funct. (2019). https://doi.org/10.1039/c9fo00508k

    Article  PubMed  Google Scholar 

  41. H.D. Choi, J.S. Hong, P.S. Min, E.B. Ko, H.Y. Shin, J.Y. Kim, Carbohydr. Polym. (2020). https://doi.org/10.1016/j.carbpol.2020.116241

    Article  PubMed  Google Scholar 

  42. G.J. Lee, H.A. Son, J.W. Cho, S.K. Choi, H.T. Kim, J.W. Kim, J. Colloid Interface Sci. (2014). https://doi.org/10.1016/j.jcis.2013.09.015

    Article  PubMed  Google Scholar 

  43. Y. Tan, K. Xu, C. Niu, C. Liu, Y.L. Li, P.X. Wang, B.P. Binks, Food Hydrocoll. (2014). https://doi.org/10.1016/j.foodhyd.2013.08.032

    Article  Google Scholar 

  44. S. Hedayati, F. Shahidi, A. Koocheki, A. Farahnaky, M. Majzoobi, Food Hydrocoll. (2019). https://doi.org/10.1016/j.foodhyd.2019.105620

    Article  Google Scholar 

  45. Q.Q. Lin, R. Liang, F. Zhong, A.Q. Ye, H. Singh, Food Hydrocoll. (2018). https://doi.org/10.1016/j.foodhyd.2018.05.056

    Article  Google Scholar 

  46. H.Z. Wang, V. Singh, S.H. Behrens, J. Phys. Chem. Lett. (2012). https://doi.org/10.1021/jz300909z

    Article  PubMed  PubMed Central  Google Scholar 

  47. C. Ratchanee, J. Anuvat, J. Kamolwan, H. Thepkunya, N. Onanong, M.D. Julian, J. Food Sci. (2011). https://doi.org/10.1111/j.1750-3841.2010.01959.x

    Article  Google Scholar 

  48. S. Simsek, M.M. Ovando, A. Marefati, M. Sjӧӧ, M. Rayner, Food Res. Int. (2015). https://doi.org/10.1016/j.foodres.2015.05.034

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not for profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, XW and JZ; methodology, JZ, and XY; validation, XW and QZ; visualization, ML; supervision, XW; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xiuli Wu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhang, J., Yan, X. et al. Acid heating treatment of octenyl succinate anhydride starch and its application in Pickering emulsion stability. Food Measure 18, 2076–2085 (2024). https://doi.org/10.1007/s11694-023-02317-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02317-5

Keywords

Navigation