Skip to main content
Log in

Optimization of extraction and study of the in vitro static simulation of INFOGEST gastrointestinal digestion and in vitro colonic fermentation on the phenolic compounds of dandelion and their antioxidant activities

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The aim of this study is to optimize the extraction process and investigate the impact of in vitro gastrointestinal digestion on phenolic compounds, including total polyphenols, flavonoids, and tannins, present in dandelion (Taraxacum officinale), and their corresponding antioxidant activity. To optimize the quantity of extracted phenolic compounds and their antioxidant activity, a centered composite experimental design was employed, with solvent concentration and maceration time as the optimized factors. The study also examines the effect of digestion and colonic fermentation on the antioxidant activity and phenolic compound content of dandelion, using in vitro static simulation of INFOGEST gastrointestinal digestion and colonic fermentation, respectively. Spectrophotometric methods were used to determine the total polyphenol, flavonoid, and tannin contents of the plant. The evaluation of antioxidant activity was carried out using the DPPH and ABTS methods. Results indicated that the optimal contents of total polyphenols, flavonoids, and tannins were 13.6311 mg GAE/g, 10.8377 mg QE/g, and 7.584 mg EAT/g, respectively. The DPPH and ABTS methods recorded minimum IC50 values of 0.0892 mg/mL and 0.15 mg/mL, respectively. The study revealed that the salivary, gastric, and intestinal phases of digestion and in vitro colonic fermentation cause a decrease in total polyphenols and tannins but increase the flavonoid content, which initially rises during the oral phase, decreases during the gastric and intestinal phases, and increases again during in vitro colonic fermentation. The evaluation of antioxidant activity by the DPPH method shows that the dandelion extract exhibits strong antioxidant activity, which decreases during the oral phase, but gradually increases after the gastric, intestinal, and fecal fermentation phases. However, there was no significant difference in antioxidant capacity between the digested and undigested plant samples for the ABTS method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Rwivoo, R. Mousumi, M.H. Prakash, J. Appl. Microbiol. 132, 5 (2022)

    Google Scholar 

  2. P. Singh, C. Tuck, P.R. Gibson, W.D. Chey, Am. J. Gastroenterol. 117, 6 (2022)

    Google Scholar 

  3. G. Briguglio, C. Costa, M.P.F. Giambò, S.C.C. Fenga, Int. J. Funct. Nutr. 1, 2 (2020)

    Article  Google Scholar 

  4. B.S. Alotaibi, M. Ijaz, M. Buabeid, Z.J. Kharaba, H.S. Yaseen, G. Murtaza, Drug Design, Development and Therapy 15(2021)

  5. M. Martiniakova, M. Babikova, V. Mondockova, J. Blahova, V. Kovacova, R. Omelka,Nutrients. 14, 3 (2022)

    Google Scholar 

  6. L. Bernadetta, B. Olas, J. Funct. Foods. 59 (2019)

  7. B.M. Türkmen,, G.T.U. Lokman, E.M. Kocaman, Journal of Culinary Science & Technology, (2023)

  8. K.D. Małgorzata, J. Baraniak, Foods. 11, 18 (2022)

    Google Scholar 

  9. B. Olas, Nutrients. 14, 7 (2022)

    Google Scholar 

  10. M. Forghani, S.A. Shahidi, A. Ghorbani-Hasansaraei, Bulletin of the Transilvania University of Brasov. Ser. II: Forestry• Wood Industry• Agricultural Food Eng., 119–138(2020)

  11. A. Ahmadi, S.A. Shahidi, R. Safari, A. Motamedzadegan, A. Ghorbani-HasanSaraei, Food Chem. Toxicol., 163, (2022)

  12. K. Afshari, V. Samavati, S.A. Shahidi, Int. J. Biol. Macromol., 74, (2015)

  13. S.A. Shahidi, Effect of solvent type on ultrasound-assisted extraction of antioxidant compounds from Ficaria kochii: optimization by response surface methodology, Food Chem. Toxicol., 163, (2022)

  14. H. Tapiero, H. Tapiero, D.M. Townsend et al., K.D. Tew in Stress oxydatif icaments (EDP Sciences 2006, 2022) pp. 1–12

  15. O. Menard, D. Dupont,Innov Agronom. 36, (2014)

  16. I. Laib, F. Kehal, M. Arris, M.I. Maameri, H. Lachlah, C.Bensouici, R. Mosbah, M. Houasnia, M. Barkat, Nutrition Clinique et Métabolisme 35, 3 (2021)

  17. S. Marze, Cahiers de Nutrition et de Diététique. 57, 2 (2022)

    Article  Google Scholar 

  18. G.O.U.P.Y. Jacques, Plans d’expériences pour Surfaces de réponse (Dunod, Paris, 1999), p. 409

    Google Scholar 

  19. G. Dey, A. Mitra, R. Banerjee, R. Mitra, B.R. Maiti, Biochem. Eng. J. 1(2001)

  20. I. Shih, Y. Van, Y. Chang, Enzyme Microb. Technol. 31(2002)

  21. A. Brodkorb, L. Egger, M. Alminger, P. Alvito, R. Assunção, S. Ballance, T. Bohn, C. Bourlieu-Lacanal, R. Boutrou, F. Carrière, A.C.M. Corredig, D. Dupont, C. Dufour, C. Edwards, M. Golding, S. Karakaya, B. Kirkhus, S. Le Feunteun, U. Lesmes, A. Macierzanka, A.R. Mackie, C. Martins, S. Marze, D.J. McClements, O. Ménard, M. Minekus, R. Portmann, C.N. Santos, I. Souchon, R.P. Singh, G.E. Vegarud, M S J. Wickham, W. Weitschies, I. Recio Nat Protoc. 14, (2019)

  22. R.L.T. Dutra, A.M. Dantas, D. de Marques et al., A., Batista Food Research International, 100, (2017)

  23. A. Koutsos, M. Lima, L. Conterno, M. Gasperotti, M. Bianchi, F. Fava, U. Vrhovsek, J.A. Lovegrove, K.M. Tuohy, Nutrients. 9, 6 (2017)

    Article  Google Scholar 

  24. P.C. Gema, G. Borges, I. Ky, A. Ribas, L. Calani, D. Del Rio, M.N. Clifford, S.A. Roberts, A. Crozier, Mol. Nutr. Food Res. 59, 3 (2015)

    Google Scholar 

  25. A. Waterhouse, Food Anal. Chem. 299 (1999)

  26. C.C. Chang, M.H. Yang, H.M. Wen, J.C. Chern, J. Food Drug Anal. 10, 3 (2002)

    Google Scholar 

  27. R.E. Burns, Agron. J. 63, 3 (1971)

    Article  Google Scholar 

  28. M.S. Blois, Nature 181(1958)

  29. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med. 26(1999)

  30. A. Sala, K. Spalding, K. Ashton, R. Board, H. Butler, T.P. Dawson, D.A. Harris, C.S. Hughes, C.A. Jenkins, M.D. Jenkinson, D.S. Palmer, B.R. Smith, C.A. Thornton, M.J. Baker, J. Biophotonics 13(2020)

  31. L.I. Jingwen, J. Luo, Y. Chai, Y. Guo, Y. Tianzhi, Y. Bao, Food SciNutr. 9, 4 (2021)

    Google Scholar 

  32. O.O. Aremu, A.O. Oyedeji, O.O. Oyedeji, B.N. Nkeh-Chungag, C.R.S. Rusike, Antioxidants. 8, 8 (2019)

    Article  Google Scholar 

  33. W. Akhtar, G. Ali, N. Ashraf, I. Fatima, W.K. Kayani, H. Shaheen, M.M. Ghoneim, M.A. Abdelgawad, A. Khames, Evid Based Complement Alternat Med. 2022 (2022)

  34. Z. U.Aabideen, M. W.Mumtaz, M.T. Akhtar, H. Mukhtar, S.A. Raza, T. Touqeer, N. Saari, Molecules. 25, 21 (2020)

    Article  Google Scholar 

  35. B. García-Carrasco, R. Fernandez-Dacosta, A. Dávalos, J.M. Ordovás, A. Rodriguez-Casado, Med Sci, 3,2(2015)

  36. A.C. Marcus, O.S. Edori, M.C. Maduagu, Biochem. &Analytical Biochem., 8,1 (2019).

  37. E.H. Kassimi, K. Belhaj, L. Mahir, B.A. Lolla, S. Lahrabli, F. Lmidmani, A. Garch Annals of Physical and Rehabilitation Medicine, 57 (2014)

  38. C.T. Ciucure, D. Șandru, E. Lengyel, R. Iancu, O.Tiț, Advances in biotechnology. International Multidisciplinary Scientific Geo Conference, SGEM, 1(2016)

  39. T.K. Kouamé, S. Sorho, K. Siaka, B.B.K. Amian, Y. Soro, Int. J. Biol. Chem. Sci. 15, 1 (2021)

    Article  Google Scholar 

  40. M. Alminger, A.M. Aura, T. Bohn, C. Dufour, S.N. El, A. Gomes, S. Karakaya, M.C. Martínez-Cuesta, G.J. McDougall, T. Requena, C.N. Santos, Compr. Rev. Food Sci. Food Saf.,13,4(2014)

  41. V. Pavan, R.A.S. Sancho, G.M. Pastore, LWT-Food Sci. Technol., 59,2(2014)

  42. U.P. Mall, V.H. Patel, Food Chem. Adv., 2, (2023)

  43. I. Ginsburg, E. Koren, M. Shalish, J. Kanner, R. Kohen Arch. Oral Biol. 57, 10 (2012)

    Article  Google Scholar 

  44. K. Wojtunik-Kulesza, A. Oniszczuk, T. Oniszczuk, M. Combrzyński, D. Nowakowska, A. Matwijczuk Nutrients. 12, 5 (2020)

    Google Scholar 

  45. M. Tamura, Y. Okazaki, C. Kumagai, Y. Ogawa, Food Res. Int., 94 (2017)

  46. P. Sarni-Manchado, V. Cheynier, M. Moutounet, Agric. Food Chem. 47,1(1999)

  47. C. Pineda-Vadillo, F. Nau, C.G. Dubiard, V. Cheynier, E. Meudec, M. Sanz-Buenhombre, A.G.T.T.Ã.Ã. Csavajda, H. Hingyi, Food Res. Int., 88(2016)

  48. K. Wroblewski, R. Muhandiram, A. Chakrabartty, A. Bennick Eur. J. Biochem., 268 (2001)

  49. C. Le Bourvellec, C.M.G.C. Renard, Crit. Rev. Food Sci. Nutr.,52(2011)

  50. P.C.A. Wootton-Beard, M. Moran, L. Ryan. Food Research International. 44, 1 (2011)

    Article  Google Scholar 

  51. I. Baker, M. Chohan, E.I. Opara, Plant Foods Hum. Nutr., 68(2013)

  52. R. Martınez-Las Heras, A. Pinazo, A. Heredia, A. Andres, Food Chem. 214(2017)

  53. H. Singh, S. Gallier, Food Structures, Digestion and Health (Academic Press, 2014), pp. 51–81

  54. L. Jakobek, Food chemistry, 175 (2015)

  55. H. Palafox-Carlos, J.F. Ayala‐Zavala, G.A. González‐Aguilar, J. Food Sci., 76,1, (2011)

  56. G.A.R.C.G. Gonc¸alves,, L. CorreaBarros, M.I. Dias, R.C. Calhelha, V.G. Correa, A. Bracht, R.M. Peralta, and I. C. F. R. Ferreira, Food Chemistry 271(2019)

  57. T. Tarko, A. Duda-Chodak, N. Zajac, Rocz. Panstw. Zakl. Hig. 64, 2 (2013)

    Google Scholar 

  58. M.J. Rodríguez-Roque, M.A. Rojas-Graü, P. Elez-Martínez, O.S.Martín-Belloso, Food Chem. 136, 1 (2013)

    Google Scholar 

  59. L. Gayoso, A.S. Claerbout, M.I. Calvo, R.Y. Cavero, I. Astiasarán, D. Ansorena J. Func. Foods 26(2016)

  60. R. Lucas-González, M. Viuda-Martos, J.A. Pérez-Alvarez, J. Fernández-López, Food Res. Int. 107 (2018)

  61. I. Laib, F. Kehal, N.E. Haddad, T. Boudjemia, M. Barkat, Acta Scientifica Naturalis. 7, 3 (2020)

    Google Scholar 

  62. I. Laib, H. Karit, R. Bouzerdouna, F. Kettouche, M. Barkat, J. Appl. Biosci. 171, 1 (2022)

    Google Scholar 

  63. N. Stanisavljevic, J. Samardzic, T. Jankovic, K. Savikin, M. Mojsin, V. Topalovic, M. Stevanovic, Food Chem., 175(2015)

  64. F. Giusti, E. Capuano, G. Sagratini, N. Pellegrini, Food Chem., 285(2019)

  65. J. Correa-Betanzo, E. Allen-Vercoe, J. McDonald, K. Schroeter, M. Corredig, G. Paliyath, Food Chem., 165 (2014)

  66. J.I. Mosele, A. Macià, M.P. Romero, M.J. Motilva, Food Chem. 201(2016)

  67. H. Li, Z. Deng, R. Liu, S. Loewen, R. Tsao, Food Chem., 159 (2014)

  68. J. Spencer, J. Nutr., 133(2003)

  69. L. Zhang, T. Wu, Y. Zhang, Y. Chen, X. Ge, W. Sui, Q. Zhu, J. Geng, M. Zhang, Food Chem. 402(2023)

  70. R. Lucas-Gonzalez, S. Navarro-Coves, J.A. Perez-Alvarez, J. Fernandez-Lopez, L.A. Mu, noz, and M. Viuda-Martos, Industrial Crops and Products, 94(2016)

  71. E. Celep, Y. Inan, S. Akyuz, E. Yesilada, Ind. Crops Prod., 109(2017)

  72. A.M. Aura, Phytochem Rev.,7 (2008)

  73. P. Costa, T. Grevenstuk, A.M.R. da Costa, S. Gonçalves, A. Romano, Ind. Crops Prod. 55 (2014)

  74. D. Bertolini, A. Conte Food Chem. 120, 2 (2010)

    Google Scholar 

  75. A. Gil-Izquierdo, P. Zafrilla, F.A. Tomás-Barberán, Europ. Food Res. Technl 214, (2002)

  76. S. Kamiloglu, E. Capanoglu, F.D. Bilen, G.B. Gonzales, C. Grootaert, T. Van de Wiele, J. Van Camp, J. Agric. Food Chem. 64, 12 (2016)

    Article  Google Scholar 

  77. X. Zhang, M. Zhang, L. Dong et al., J. Agric. Food Chem., 67,46(2019)

  78. R. Dong, Q.Y.W. Liao et al., Food Chem., 339(2021)

  79. Y. Y.Liu, Y. Li, Ke et al., Carbohydr. Polym., 251(2021)

  80. B.A. Acosta-Estrada, J.A. Gutiérrez-Uribe, S. O. Serna-Saldívar, Food Chem152, (2014)

  81. B. Gao, J. Wang, Y. Wang, Z. Xu, B. Li, X. Meng, X. Sun, J. Zhu, Food Control 133, part A(2022).

  82. C. Herles, A. Braune, M. Blaut,Arch Microbiol. 181, 6 (2004)

    Google Scholar 

  83. A. Braune, M. Blaut, Gut Microbes. 7, 3 (2016)

    Article  Google Scholar 

  84. X. Chen, H. Ji, C. Zhang, A. Liu, J. Food Meas. Charact. 14(2019)

  85. B. Olas, Nutrients 14,7 (2022)

  86. M. Kania-Dobrowolska, J. Baraniak, Foods 11,18(2022)

  87. J. Ortega-Vidal, A. Ruiz-Riaguas, M.L. Fernandez-de Cordova, P. Ortega-Barrales, E. J. Llorent-Martınez, Food Chem. 287(2019)

  88. G.A. Gonçalves,, R.C.G. Correa, L. Barros, M.I. Dias, R.C. Calhelha, V.G. Correa, A. Bracht, R.M. Peralta, I. C. F. R. Ferreira, Food Chemistry 271(2019)

  89. J. Pinto, V. Spınola, E.J. Llorent-Martınez, M.L. Fernandez-de Cordova, L. Molina-Garcıa, P.C. Castilho, Food Res. Int. 100, Pt 3(2017)

  90. E. Cristea, R. Sturza, P. Jauregi, M. Niculaua, A. Ghendov-Mosanu, A. Patras, J. Food Biochem. 43(2019)

  91. A. Altunkaya, V. Gokmen, L.H.Skibsted Food Chem., 190(2016)

  92. M. Materska, K. Olszówka, B. Chilczuk, A. Stochmal, Å. Pecio, B. Pacholczyk-Sienicka, S. Piacente, C. Pizza, M. Masullo,Eur. Food Res. Technol., 245(2019)

  93. R. Del Pino-García, M.L. González-SanJosé, M.D. Rivero-Pérez, J. García-Lomillo, P. Muñiz, Food Chem., 211(2016)

  94. S. Siluana, A. Valese, H. Daguer, G. Bergamo, M. Azevedo, P. Nehring, L. Gonzaga, R. Fett, A. Costa, Food Res. Int. 99 (2017)

  95. T. Lippolis, M. Cofano, G.R. Caponio, V. De Nunzio, M. Notarnicola, Int. J. Mol. Sci. 24, 4 (2023)

    Article  Google Scholar 

  96. G.R. Caponio, M. Noviello, F.M. Calabrese, G. Gambacorta, G. Giannelli, M. De Angelis, Antioxidants. 11, 3 (2022)

    Google Scholar 

  97. S. Ketnawa, J. Suwannachot, Y. Ogawa, Food Chem., 311(2020)

  98. G.L. Chen, S.G. Chen, Y.Y. Zhao, C.X. Luo, J. Li, Y. Q. Gao,Industrial Crops and Products 57(2015)

  99. J.M. Carbonell-Capella, M. Buniowska, M.J. Esteve, A. Frıgola, Food Chem. 184(2015)

  100. A. Floegel, D. Kim, S.J. Chung, S. Koo, O., Chun J. Food Compos. Anal. 24(2011)

  101. F. Kong, R.P. Singh, J. Food Sci., 75(2010)

  102. P.C. Wootton-Beard, A. Moran, L. Ryan, Food Res. Int. 44 (2011)

Download references

Acknowledgements

The authors are grateful to the Algerian Ministry of Higher Education and Scientific Research for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imen Laib.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laib, I., Eddine Laib, D., Semouma, D. et al. Optimization of extraction and study of the in vitro static simulation of INFOGEST gastrointestinal digestion and in vitro colonic fermentation on the phenolic compounds of dandelion and their antioxidant activities. Food Measure 17, 5660–5682 (2023). https://doi.org/10.1007/s11694-023-02083-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02083-4

Keywords

Navigation