Skip to main content
Log in

Monitoring of oxolinic acid residues in tilapia flesh (Oreochromis niloticus) using a microbiological screening technique and an LC-UV confirmatory method

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

A relevant analytical strategy was developed by combining a microbiological screening and an LC-UV chromatographic method for the identification and the quantification of oxolinic acid (OXO) in tilapia (Oreochromis niloticus) flesh. The sensitivity, accuracy and specificity of the test were 100% for OXO. The detection capacity (CCß) of the screening test was 0.75 times the maximum residue limits for OXO (100 µg kg−1). The performance parameters of the LC-UV method were satisfactory in terms of linearity within the range of 2.5 to 1000 µg kg−1 (R2 = 0.99), precision (< 23%), accuracy (− 20% to + 10%), selectivity and specificity. The limit of quantification (LOQ) and detection (LOD) was 5 and 2.5 µg kg−1 respectively. The withdrawal of OXO in tilapia is estimated for 8 days after treatment of six successive days with a dose of 12 mg kg−1 body weight per day. The strategy used in this study is simple, inexpensive and practical for the control of oxolinic acid residues in fishery products and foodstuffs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Food and Agriculture Organization, The State of World Fisheries and Aquaculture 2020. Sustainability in action. (FAO, 2020), https://doi.org/10.4060/ca9229en. Accessed 12 October 2022

  2. N.B. Dergal, S.M.E.A. Abi-Ayad, G. Degand, C. Douny, F. Brose, G. Daube, A. Rodrigues, M.L. Scippo, Afr. J. Food Sci. (2013). https://doi.org/10.5897/AJFS2013.1063

    Article  Google Scholar 

  3. E. Zahran, E. Risha, S. Elbahnaswy, H.A. Mahgoub, A. Abd El-Moaty, Aquaculture (2019) doi:https://doi.org/10.1016/j.aquaculture.2019.734451

  4. L. Sheng, L. Wang, Compr. Rev. Food Sci. Food Saf. (2020). https://doi.org/10.1111/1541-4337.12671

    Article  Google Scholar 

  5. S.E. Hassan, M.A. Abdel-Rahman, E. Mansour, W. Monir, Egy. J. Aquac. (2020). https://doi.org/10.21608/eja.2020.25437.1017

    Article  Google Scholar 

  6. R.M. Reda, R.E. Ibrahim, G. EL-Nobi, Z.M. EL-Bouhy, Egypt J Aquat Res. (2013) doi https://doi.org/10.1016/j.ejar.2013.12.001

  7. D. Schar, E.Y. Klein, R. Laxminarayan, M. Gilbert, T.P. Van Boeckel, Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-78849-3

    Article  Google Scholar 

  8. European Union, Commission Regulation (EU) N° 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. (Official Journal, 2010), http://data.europa.eu/eli/reg/2010/37(1)/oj. Accessed 12 October 2022

  9. A. Hossain, M. Habibullah-Al-Mamun, I. Nagano, S. Masunaga, D. Kitazawa, H. Matsuda, Environ. Sci. Pollut. Res. (2022). https://doi.org/10.1007/s11356-021-17825-4

    Article  Google Scholar 

  10. J. Chen, R. Sun, C. Pan, Y. Sun, B. Mai, Q.X. Li, J. Agric. Food Chem. (2020). https://doi.org/10.1021/acs.jafc.0c03996

    Article  Google Scholar 

  11. L. Guardone, L. Tinacci, A. Armani, M. Trevisani, Food Control (2022). https://doi.org/10.1016/j.foodcont.2021.108780

    Article  Google Scholar 

  12. R. Lulijwa, E.J. Rupia, A.C. Alfaro, Rev. Aquac. (2019). https://doi.org/10.1111/raq.12344

    Article  Google Scholar 

  13. M.M. Hassan, M.E. El Zowalaty, A. Lundkvist, J.D. Jarhult, M.R.K. Nayem, A.Z. Tanzin, M.R. Badsha, S.A. Khan, H.M. Ashour, Trends Food Sci. Technol. (2021). https://doi.org/10.1016/j.tifs.2021.01.075

    Article  Google Scholar 

  14. F.R. Meklati, A. Panara, A. Hadef, A. Meribai, M.H. Ben-Mahdi, M.E. Dasenaki, N.S. Thomaidis, Toxics (2022). https://doi.org/10.3390/toxics10010019

    Article  Google Scholar 

  15. Z.E. Menkem, B.L. Ngangom, S.S.A. Tamunjoh, F.F. Boyom, Acta Ecol. Sin. (2019). https://doi.org/10.1016/j.chnaes.2018.10.004

    Article  Google Scholar 

  16. S. Dawadi, R. Thapa, B. Modi, S. Bhandari, A.P. Timilsina, R.P. Yadav, B. Aryal, S. Gautam, P. Sharma, B.B. Thapa, N. Aryal, S. Aryal, B.P. Regmi, N. Parajuli, Processes (2021). https://doi.org/10.3390/pr9091500

    Article  Google Scholar 

  17. R.C. Okocha, I.O. Olatoye, O.B. Adedeji, Public Health Rev. (2018). https://doi.org/10.1186/s40985-018-0099-2

    Article  Google Scholar 

  18. M.I.S. Nugroho, W. Pawestri, N. Hakimah, IOP Conf. Ser. Earth Environ. Sci. (2022). https://doi.org/10.1088/1755-1315/1001/1/012038

    Article  Google Scholar 

  19. Y. Xiao, S. Liu, Y. Gao, Y. Zhang, Q. Zhang, X. Li, Separations (2022). https://doi.org/10.3390/separations9020035

    Article  Google Scholar 

  20. R.B. Julinta, T.J. Abraham, A. Roy, J. Singha, S. Boda, P.K. Patil, Ecotoxicol. Environ. Saf. (2019). https://doi.org/10.1016/j.ecoenv.2019.109752

    Article  Google Scholar 

  21. P.K. Dang, G. Degand, S. Danyi, G. Pierret, P. Delahaut, V.D. Ton, G. Maghuin-Rogister, M.L. Scippo, Anal. Chim. Acta (2010). https://doi.org/10.1016/j.aca.2010.03.055

    Article  Google Scholar 

  22. European Communities. Commission Decision N° 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. (Official Journal, 2002), http://data.europa.eu/eli/dec/2002/657/oj. Accessed 12 October 2022.

  23. Community Reference Laboratories Residues. Guidelines for the validation of screening methods for residues of veterinary medicines (initial validation and transfer). (CRL, 2010), https://food.ec.europa.eu/system/files/2016-10/cs_vet-med residues_guideline_validation_screening_en.pdf. Accessed 12 October 2022.

  24. S. Danyi, J. Widart, C. Douny, P.K. Dang, D. Baiwir, N. Wang, H.T. Tu, V.T. Tung, N.T. Phuong, P. Kestemont, M.L. Scippo, J. Vet. Pharmacol. Ther. (2011). https://doi.org/10.1111/j.1365-2885.2010.01204.x

    Article  Google Scholar 

  25. P.K. Dang, J. Chu, N.T. Do, F. Brose, G. Degand, P. Delahaut, E. De Pauw, C. Douny, K.V. Nguyen, T.D. Vu, M.L. Scippo, H.F.L. Wertheim, EcoHealth (2015). https://doi.org/10.1007/s10393-014-1006-z

    Article  Google Scholar 

  26. M.G. Pikkemaat, Anal. Bioanal. Chem. (2009). https://doi.org/10.1007/s00216-009-2841-6

    Article  Google Scholar 

  27. D. Sanz, L. Mata, S. Condon, M.A. Sanz, P. Razquin, Food Anal. Methods (2011). https://doi.org/10.1007/s12161-010-9151-7

    Article  Google Scholar 

  28. S.L. Stead, H. Ashwin, S.F. Richmond, M. Sharman, P.C. Langeveld, J.P. Barendse, J. Stark, B.J. Keely, Int. Dairy J. (2008). https://doi.org/10.1016/j.idairyj.2007.06.006

    Article  Google Scholar 

  29. Q. Wu, D. Peng, Q. Liu, M.A.B. Shabbir, A. Sajid, Z. Liu, Y. Wang, Z. Yuan, Front Microbiol. (2019). https://doi.org/10.3389/fmicb.2019.00436

    Article  Google Scholar 

  30. A.A.M. Stolker, Drug Test Anal. (2012). https://doi.org/10.1002/dta.1357

    Article  Google Scholar 

  31. A.E.M.A. Morshdy, M.A.M. Hussein, M.A.A. Mohamed, E. Hamed, A.E. El-Murr, W.S. Darwish, J. Consum. Prot. Food Saf. (2022). https://doi.org/10.1007/s00003-022-01389-7

    Article  Google Scholar 

  32. J. Peris-Vicente, K. Tayeb-Cherif, S. Carda-Broch, J. Esteve-Romero, Electrophoresis (2017). https://doi.org/10.1002/elps.201700159

    Article  Google Scholar 

  33. L.R. Guidi, F.A. Santos, A.C.S.R. Ribeiro, C. Fernandes, L.H.M. Silva, M.B.A. Gloria, Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2017.11.094

    Article  Google Scholar 

  34. R.S. Chen, S.Y. Sheu, Y.J. Xue, C.Y. Wang, C.H. Liu, T.F. Kuo, J.H. Wang., C.H. Chou, (2019) Isr J Aquac Bamidgeh 71, 1637

  35. S. Phommachanh, B. Tengjaroenkul, P. Sukon, L. Neeratanaphan., K. Chukanhom, (2021) Thai. J. Vet. Med. 51:422

  36. J.A.R. Paschoal, F.G.R. Reyes, S. Rath, Anal. Bioanal. Chem. (2009). https://doi.org/10.1007/s00216-009-2900-z

    Article  Google Scholar 

  37. F. Eissa, K. Ghanem, M. Al-Sisi, Toxicol Rep. (2020). https://doi.org/10.1016/j.toxrep.2020.03.004

    Article  Google Scholar 

  38. J.B. Feng, X.P. Jia, L.D. Li, Aquaculture (2008). https://doi.org/10.1016/j.aquaculture.2008.01.002

    Article  Google Scholar 

  39. T.J. Abraham, A. Roy, R.B. Julinta, J. Singha, P.K. Patil, E.K.N. Krishna, R. Rajisha, K.A. Kumar, Environ. Sci. Pollut. Res. (2021). https://doi.org/10.1007/s11356-021-14854-x

    Article  Google Scholar 

  40. G.T. Haugland, K.O. Kverme, R. Hannisdal, M. Kallekleiv, D.J. Colquhoun, B.T. Lunestad, H.I. Wergeland, O.B. Samuelsen, Front. Vet. Sci. (2019). https://doi.org/10.3389/fvets.2019.00394

    Article  Google Scholar 

  41. J. Rosa, S. Leston, A. Freitas, J. Barbosa, P. Rema, J. Dias, M.F.L. Lemos, M.A. Pardal, F. Ramos, Aquaculture (2018). https://doi.org/10.1016/j.aquaculture.2018.08.035

    Article  Google Scholar 

  42. J. Rosa, S. Leston, M. Castro, A. Freitas, J. Barbosa, M.A. Pardal, P. Rema, J. Dias, F. Ramos, Food Control (2017). https://doi.org/10.1016/j.foodcont.2017.11.005

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Mr. Guy Degand (laboratory engineer) and Mr. François Brose for their precious assistance during the manipulations. They also thank M. Zouaoui Chentouf, the manager of tilapicuture farm in Algeria, for providing tilapia specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadir B. Dergal.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dergal, N.B., Dang, P.K., Douny, C. et al. Monitoring of oxolinic acid residues in tilapia flesh (Oreochromis niloticus) using a microbiological screening technique and an LC-UV confirmatory method. Food Measure 17, 836–848 (2023). https://doi.org/10.1007/s11694-022-01677-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01677-8

Keywords

Navigation