Skip to main content
Log in

Effect of Current Density, Reaction Temperature and Deposition Time on the Electrodeposition of ZrB2 Coating

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

ZrB2 coating was successfully prepared on molybdenum substrate by molten salt electrodeposition method in this study. The reaction medium was NaCl-KCl eutectic molten salt with K2ZrF6 as the zirconium source and KBF4 as the boron source. The effect of electrodeposition parameters including the current density, reaction temperature and deposition time on the phase composition, surface and cross-sectional morphologies, thickness, and preferred orientation of ZrB2 coating was investigated in detail. The influence mechanism of each condition was also discussed. The experimental results proved that all the three parameters could directly affect the electrodeposition process of ZrB2 coating in molten salt. With the increase of the current density, the thickness and surface roughness of the coating increased. Higher reaction temperature could accelerate the mass transfer, weaken the concentration polarization, and increase the deposition rate of the coating. With the extension of the deposition time, the electrodeposition control process of ZrB2 coating changed from single electrochemical polarization control to the combination of electrochemical polarization and concentration polarization control. The preparation of ZrB2 coating by molten salt electrodeposition showed a wide process window. By adjusting the electrodeposition process parameters, ZrB2 coatings with different microstructures, preferred orientation, and thickness could be prepared on the surface of molybdenum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Fang, W. Li, T. Cheng, Z. Qu, Y. Chen, R. Wang, and S. Ai, Review on Mechanics of Ultra-High-Temperature Materials, Acta Mech. Sin., 2021, 37, p 1347.

    Article  Google Scholar 

  2. X. Zhang, Y. Chen, and J. Hu, Recent Advances in the Development of Aerospace Materials, Prog. Aerosp. Sci., 2018, 97, p 22.

    Article  Google Scholar 

  3. N.P. Padture, Advanced Structural Ceramics in Aerospace Propulsion, Nat. Mater., 2016, 15, p 804.

    Article  CAS  Google Scholar 

  4. X. Wang, K. Xing, Q. Li, and T. Yang, Oxidation Behavior and Interfacial Microstructure Evolution of MoSi2/MoB Coatings on Mo1 Substrate at 600 and 1400° C, Int. J. Refract. Met. Hard Mater., 2023, 113, p 106189.

    Article  CAS  Google Scholar 

  5. Y. Huang, R. Zhai, T. Huang, H. Pei, X. He, F. Wan, and P. Song, Comparative Study on High-Temperature Oxidation Behavior of MoSi2 and MoSi2/SiC-Mo2C Composite Coatings on Mo Substrates at 1300° C, Surf. Coat. Tech., 2023, 458, p 129359.

    Article  CAS  Google Scholar 

  6. S. Guo, W. Zhou, Z. Zhou, and N. Nomura, Laser Additive Manufacturing of Pure Molybdenum Using Freeze-Dry Pulsated Orifice Ejection Method-Produced Powders, J. Mater. Res. Technol., 2022, 16, p 1508.

    Article  CAS  Google Scholar 

  7. T. Fu, Y. Zhang, F. Shen, K. Cui, and L. Chen, Microstructure and Oxidation Behavior of Si-MoSi2 Coating Deposited on Mo Substrate at 600° C and 900° C in Static Air, Mater Charact, 2022, 192, p 112192.

    Article  CAS  Google Scholar 

  8. J.K. Yoon and G.H. Kim, Isothermal and Cyclic Oxidation Behavior of In-situ Grown MoSi2-SiC Coating on Mo Substrate at 1300° C, Surf. Coat. Tech., 2023, 464, p 129582.

    Article  CAS  Google Scholar 

  9. X. Huang, S. Sun, and G. Tu, Investigation of Mechanical Properties and Oxidation Resistance of CVD TiB2 Ceramic Coating on Molybdenum, J. Mater. Res. Technol., 2020, 9, p 282.

    Article  CAS  Google Scholar 

  10. W.G. Fahrenholtz and G.E. Hilmas, Ultra-High Temperature Ceramics: Materials for Extreme Environments, Scr. Mater., 2017, 129, p 94.

    Article  CAS  Google Scholar 

  11. B.R. Golla, A. Mukhopadhyay, B. Basu, and S.K. Thimmappa, Review on Ultra-High Temperature Boride Ceramics, Prog. Mater. Sci., 2020, 111, p 100651.

    Article  CAS  Google Scholar 

  12. W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, and J.A. Zaykoski, Refractory Diborides of Zirconium and Hafnium, J. Am. Ceram. Soc., 2007, 90, p 1347.

    Article  CAS  Google Scholar 

  13. J. Hao, J. Li, B. Zou, X. Cai, W. Shi, and Y. Tan, Effect of Phase Composition on the Oxidation Resistance of ZrB2-SiC Coatings, J. Eur. Ceram. Soc., 2022, 42, p 2097.

    Article  CAS  Google Scholar 

  14. F. Monteverde and A. Bellosi, Oxidation of ZrB2-Based Ceramics in Dry Air, J. Electrochem. Soc., 2003, 150, p B552.

    Article  CAS  Google Scholar 

  15. D. Wang, L. Zhang, X.T. Luo, and C.J. Li, MoSi2 Addition for High Ablation Resistance of Dense ZrB2-Based Composite Coating Prepared by Very Low-Pressure Plasma Spraying, Corros. Sci., 2022, 209, p 110800.

    Article  CAS  Google Scholar 

  16. J. Pourasad and N. Ehsani, In-situ Synthesis of SiC-ZrB2 Coating by a Novel Pack Cementation Technique to Protect Graphite Against Oxidation, J. Alloys Compd., 2017, 690, p 692.

    Article  CAS  Google Scholar 

  17. J. Deng, L. Cheng, G. Zheng, K. Su, and L. Zhang, Thermodynamic Study on Co-deposition of ZrB2–SiC from ZrCl4–BCl3–CH3SiCl3–H2–Ar System, Thin Solid Films, 2012, 520, p 7030.

    Article  CAS  Google Scholar 

  18. A.I. Hab, High-Temperature Electrochemical Synthesis of Coatings of Carbides, Borides, and Silicides of Metals of the IV–VI B Groups from Ionic Melts, Mater. Sci., 2007, 43, p 76.

    Article  Google Scholar 

  19. J.H. Yuan, W.M. Guo, Q.Y. Liu, Y. Zhang, L.X. Wu, Y. You, S.K. Sun, M.W. Bai, and H.T. Lin, Influence of TiB2 and CrB2 on Densification, Microstructure, and Mechanical Properties of ZrB2 Ceramics, Ceram. Int., 2021, 47, p 28008.

    Article  CAS  Google Scholar 

  20. G. Kaptay and S.A. Kuznetsov, Electrochemical Synthesis of Refractory Borides from Molten Salts, Plasmas Ions, 1999, 2, p 45.

    Article  CAS  Google Scholar 

  21. M. Gaune-Escard, Molten Salts: From Fundamentals to Applications, Springer, Dordrecht, 2022.

    Google Scholar 

  22. X. Bai, D. Wang, J. Li, S. Li, Y. Che, J. He, and J. Song, Electrodeposition of Tantalum and Its Electrochemical Behaviors in Molten NaCl-KCl, Mater. Res. Bull., 2022, 149, p 111709.

    Article  CAS  Google Scholar 

  23. W. Jin, S. Xiao, Q. Kou, D. Ding, J. Zhang, X. Fang, C. Ge, C. Zhong, H. Zhu, and G.M. Haarberg, Preparation of Diboride Coatings by Electrophoretic Deposition in Nanoparticle-Containing Molten Inorganic Salts, Mater. Lett., 2022, 306, p 130908.

    Article  CAS  Google Scholar 

  24. C. Ge, Q. Kou, J. Pang, J. Zhang, W. Jin, H. Zhu, G.M. Haarberg, and S. Xiao, Preparation of ZrB2 Coatings by Electrophoretic Deposition in NaCl–KCl–AlCl3 Molten Salts, J. Mater. Res. Technol., 2022, 20, p 772.

    Article  CAS  Google Scholar 

  25. Z.H. Dong, X. Peng, and F.H. Wang, Oxidation of a ZrB2 Coating Fabricated on Ta–W Alloy by Electrophoretic Deposition and Laser Melting, Mater. Lett., 2015, 148, p 76.

    Article  CAS  Google Scholar 

  26. S.V. Devyatkin, Electrosynthesis of Zirconium Boride from Cryolite–Alumina Melts Containing Zirconium and Boron Oxides, Russ. J. Electrochem., 2001, 37, p 1308.

    Article  CAS  Google Scholar 

  27. G.W. Mellors and S. Senderoff, Electrosynthesis of Zirconium Boride from Cryolite–Alumina Melts Containing Zirconium and Boron Oxides, J. Electrochem. Soc., 1971, 118, p 220.

    Article  CAS  Google Scholar 

  28. Q. Wang, J.W. Zhang, L. Zhang, H.J. Liu, and C.L. Zeng, Stability Investigation of Electrodeposited Zirconium Diboride Ceramic Coatings in Molten Zinc, Mater. Corros., 2019, 70, p 492.

    Article  CAS  Google Scholar 

  29. Y. Huang, S. Bai, H. Zhang, and Y. Ye, Growth Mechanism and Mechanical Property of Laminar Iridium Coating by Electrodeposition, Int. J. Refract. Met. Hard Mater., 2015, 50, p 204.

    Article  CAS  Google Scholar 

  30. Q. Wang, L. Zhang, L.L. Zhai, J.D. Li, and J.W. Zhang, In-situ Synthesis of Silicide Coatings on Molybdenum Substrates by Electrodeposition in Chloride-Fluoride Molten Salts, Int. J. Refract. Met. Hard Mater., 2019, 82, p 340.

    Article  CAS  Google Scholar 

  31. F. Jiang, Effect of Cathodic Current Density on Performance of Tungsten Coatings on Molybdenum Prepared by Electrodeposition in Molten Salt, Appl. Surf. Sci., 2016, 363, p 389.

    Article  CAS  Google Scholar 

  32. X. Meng, Y. Norikawa, and T. Nohira, Effect of Cathodic Current Density on Performance of Tungsten Coatings on Molybdenum Prepared by Electrodeposition in Molten Salt, Electrochem. Commun., 2021, 132, p 107139.

    Article  CAS  Google Scholar 

  33. W. Qin, X. Xi, L. Zhang, M. Wang, Q. Zhang, X. Wang, X. Wang, and Z. Nie, Electrochemical Preparation of W Coatings in Na2WO4-WO3-ZrO2 Molten Salt, Appl. Surf. Sci., 2021, 561, p 149889.

    Article  CAS  Google Scholar 

  34. S. Hu, S. Bai, L. Zhu, Y. Ye, Z. Wang, S. Li, and Y. Tang, Micromorphology and Texture of Niobium Coating Electrodeposited in NaCl—KCl—CsCl Molten Salt System, Trans. Nonferrous Met. Soc. China, 2022, 32, p 3650.

    Article  CAS  Google Scholar 

  35. L. Zhu, S. Bai, H. Zhang, and Y. Ye, Effects of Cathodic Current Density and Temperature on Morphology and Microstructure of Iridium Coating Prepared by Electrodeposition in Molten Salt under the Air Atmosphere, Appl. Surf. Sci., 2013, 265, p 537.

    Article  CAS  Google Scholar 

  36. Y. Norikawa, X. Meng, K. Yasuda, and T. Nohira, Effect of Temperature on Crystal Structure of W Films Electrodeposited from Molten CsF–CsCl–WO3, J. Electrochem. Soc., 2022, 169, p 102506.

    Article  CAS  Google Scholar 

  37. Q.B. Zhang, Y.X. Hua, T.G. Dong, and D.G. Zhou, Effects of Temperature and Current Density on Zinc Electrodeposition from Acidic Sulfate Electrolyte with [BMIM] HSO4 as Additive, J. Appl. Electrochem., 2009, 39, p 1207.

    Article  CAS  Google Scholar 

  38. V.K. Afonichkin and L.G. Khrustova, Effect of Cationic Composition of Melts M2WO4-M2W2O7-UO2WO4 (M = Li, Na, K, Cs) and Parameters of Electrolysis to Uranium Dioxide Electrodeposition Characteristics, Russ. J. Electrochem., 2010, 46, p 693.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China No. 52101087, University-Industry Collaborative Education Program No. 220607018162819, and Natural Science Foundation of Liaoning Province No. 2022-MS-355.

Author information

Authors and Affiliations

Authors

Contributions

YLZ Investigation, Data Curation, Writing-Original draft; QW Methodology, Investigation, Conceptualization, Writing-Review and Editing, Resources; DTW Investigation, Formal analysis; LZ Investigation, Formal analysis, Visualization; SMK Formal analysis, Resources; JWZ Methodology, Supervision.

Corresponding author

Correspondence to Qian Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y.L., Wang, Q., Wang, D.T. et al. Effect of Current Density, Reaction Temperature and Deposition Time on the Electrodeposition of ZrB2 Coating. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-023-09115-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-09115-6

Keywords

Navigation