Skip to main content
Log in

Review on mechanics of ultra-high-temperature materials

  • Invited Review
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Ultra-high-temperature materials have applications in aerospace and nuclear industry. They are usually subjected to complex thermal environments during service. The mechanical properties of materials in ultra-high-temperature environments have been attracted increasing attentions. However, the characterization and evaluation of ultra-high-temperature mechanical properties of materials are still challenging work. This article presents a review on the mechanical properties of materials at elevated temperatures. The experimental results and techniques on the ultra-high-temperature mechanical properties of materials are reviewed. The constitutive models of materials at elevated temperatures are discussed. The recent research progress on the quantitative theoretical characterization models for the temperature-dependent fracture strength of advanced ceramics and their composites is also given, and the emphasis is placed on the applications of the force-heat equivalence energy density principle. The thermal–mechanical-oxygen coupled computational mechanics of materials are discussed. Furthermore, the outlook and concluding remarks are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Clougherty, E.V., Peters, E.T., Kalish, D.: Diboride materials, candidates for aerospace applications. In: Proceedings of 15th National SAMPE Symposium and Exhibition. Los Angeles, Calif, USA (1969)

  2. Fenter, J.R.: Refractory diborides as engineering materials (Refractory diborides in oxidizing environments, considering mechanical strength, thermal stability, oxidation resistance, heat conductivity, thermal expansion, specific heat and electrical resistance). SAMPE Q. 2, 1–15 (1971)

    Google Scholar 

  3. Hill, M.L.: Materials for small radius leading edges for hypersonic vehicles. In: The AIAA/ASME 8th Structures, Structural Dynamics and Material Conference. Palm Springs, Calif, USA (1967).

  4. Kaufman, L.: Boride composites—a new generation of nose cap and leading edge materials for reusable lifting reentry systems. In: Advanced Space Transportation Meeting. Cocoa Beach, FL, USA (1970)

  5. Kaufman, L., Clougherty, E.V.: Investigation of boride compounds for very high temperature applications. Part II: Techn. Rep. No. TRD-TDR-63–4096-PT-2/Manlabs Inc. Cambridge, UK (1965)

  6. Lavrenko, V.A., Panasyuk, A.D., Protsenko, T.G., et al.: High-temperature reactions of materials of the ZrB2-ZrSi2 system with oxygen. Soviet Powder Metall. Metal Ceram. 21, 471–473 (1982)

    Article  Google Scholar 

  7. Opeka, M.M., Talmy, I.G., Wuchina, E.J., et al.: Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 19, 2405–2414 (1999)

    Article  Google Scholar 

  8. Collin, M., Rowcliffe, D.: Analysis and prediction of thermal shock in brittle materials. Acta Mater. 48, 1655–1665 (2000)

    Article  Google Scholar 

  9. Qian, G., Nakamura, T., Berndt, C.C.: Effects of thermal gradient and residual stresses on thermal barrier coating fracture. Mech. Mater. 27, 91–110 (1998)

    Article  Google Scholar 

  10. Fang, D.N.: Macro-and micro-mechanics and strengthening and toughening design for advanced composite materials: challenges and development. Acta Materiae Compositae Sin. 17, 1–7 (2000)

    Google Scholar 

  11. Fu, H.Z., Zhu, M., Yang, S.Q.W.: Aerospace Technology and Material Science. Tsinghua University Press, Beijing (2000)

    Google Scholar 

  12. Li, J.P., Meng, S.H., Han, J.C., et al.: Study of two-particle softening ZrB2 ceramic matrix composites. Journal of Harbin Institute of Technology 37, 727–729 (2005)

    Google Scholar 

  13. Li, S.B., Zhang, L.T.: A new high temperature material Si(B)CN. J. Mater. Eng. 12, 39–41 (2000)

    Google Scholar 

  14. Liu, J., Xiong, X., Wang, J.Y., et al.: Research progress in materials for ultra high-temperature application. Aerosp. Mater. Technol. 35, 6–9 (2005)

    Google Scholar 

  15. Xu, Q., Zhang, X.H., Han, J.C., et al.: Current status of R & D and prospects of advanced high-temperature materials. J. Solid Rocket Technol. 25, 51–55 (2002)

    Google Scholar 

  16. Zhang, L.T., Cheng, L.F., Xu, Y.D.: Progress in research work of new CMC-SiC. Aeronaut. Manuf. Technol. 1, 24–32 (2003)

    Google Scholar 

  17. Zhu, S.M., Fahrenholtz, W.G., Hilmas, G.E.: Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride-silicon carbide ceramics. J. Eur. Ceram. Soc. 27, 2077–2083 (2007)

    Article  Google Scholar 

  18. Hu, P., Wang, Z.: Flexural strength and fracture behavior of ZrB2-SiC ultra-high temperature ceramic composites at 1800℃. J. Eur. Ceram. Soc. 30, 1021–1026 (2010)

    Article  Google Scholar 

  19. Zhao, G.L., Huang, C.Z., Liu, H.L., et al.: Microstructure and mechanical properties of hot pressed TiB2-SiC composite ceramic tool materials at room and elevated temperatures. Mat. Sci. Eng. A 606, 108–116 (2014)

    Article  Google Scholar 

  20. Zou, J., Zhang, G.J., Hu, C.F., et al.: High-temperature bending strength, internal friction and stiffness of ZrB2-20 vol% SiC ceramics. J. Eur. Ceram. Soc. 32, 2519–2527 (2012)

    Article  Google Scholar 

  21. Neuman, E.W., Hilmas, G.E., Fahrenholtz, W.G.: Mechanical behavior of zirconium diboride-silicon carbide ceramics at elevated temperature in air. J. Eur. Ceram. Soc. 33, 2889–2899 (2013)

    Article  Google Scholar 

  22. Song, G.M., Wu, Y., Li, Q.: Elevated temperature strength and thermal shock behavior of hot-pressed carbon fiber reinforced TiC composites. J. Eur. Ceram. Soc. 22, 559–566 (2002)

    Article  Google Scholar 

  23. Jing, X., Shi, D.Q., Yang, X.G., et al.: Fiber strength measurement for KD-I(f)/SiC composites and correlation to tensile mechanical behavior at room and elevated temperatures. Ceram. Int. 41, 299–307 (2015)

    Article  Google Scholar 

  24. Volkmann, E., Tushtev, K., Koch, D., et al.: Assessment of three oxide/oxide ceramic matrix composites: mechanical performance and effects of heat treatments. Compos. Part A 68, 19–28 (2015)

    Article  Google Scholar 

  25. Yang, C.P., Jiao, G.Q., Wang, B.: Modeling oxidation damage of continuous fiber reinforced ceramic matrix composites. Acta Mech. Sin. 27, 76–82 (2011)

    Article  Google Scholar 

  26. Zhao, Y., Chen, Y., Ai, S., et al.: A diffusion, oxidation reaction and large viscoelastic deformation coupled model with applications to SiC fiber oxidation. Int. J. Plast. 118, 173–189 (2019)

    Article  Google Scholar 

  27. Lu, X., Hou, Y., Tie, Y., et al.: Crack nucleation and propagation simulation in brittle two-phase perforated/particulate composites by a phase field model. Acta Mech. Sin. 36, 493–512 (2020)

    Article  MathSciNet  Google Scholar 

  28. Wuchina, E., Opeka, M., Causey, S., et al.: Designing for ultrahigh-temperature applications: the mechanical and thermal properties of HfB2, HfCx, HfNx and αHf(N). J. Mater. Sci. 39, 5939–5949 (2004)

    Article  Google Scholar 

  29. Levine, S.R., Opila, E.J., Halbig, M.C., et al.: Evaluation of ultra-high temperature ceramics for aeropropulsion use. J. Eur. Ceram. Soc. 22, 2757–2767 (2002)

    Article  Google Scholar 

  30. Loehman, R., Corral, E., Dumm, H.P., et al.: Ultra high temperature ceramics for hypersonic vehicle applications. Sandia Report, SAND 2006–2925 (2006)

  31. Neuman, E.W., Hilmas, G.E., Fahrenholtz, W.G.: Strength of zirconium diboride to 2300°C. J. Am. Ceram. Soc. 96, 47–50 (2013)

    Article  Google Scholar 

  32. Neuman, E.W., Hilmas, G.E., Fahrenholtz, W.G.: Mechanical behavior of zirconium diboride-silicon carbide ceramics up to 2200°C. J. Eur. Ceram. Soc. 35, 463–476 (2015)

    Article  Google Scholar 

  33. Neuman, E.W., Hilmas, G.E., Fahrenholtz, W.G.: Elevated temperature strength enhancement of ZrB2-30 vol% SiC ceramics by postsintering thermal annealing. J. Am. Ceram. Soc. 99, 962–970 (2016)

    Article  Google Scholar 

  34. Neuman, E.W., Hilmas, G.E., Fahrenholtz, W.G.: Ultra-high temperature mechanical properties of a zirconium diboride-zirconium carbide ceramic. J. Am. Ceram. Soc. 99, 597–603 (2016)

    Article  Google Scholar 

  35. Meléndez-Martínez, J.J., Domínguez-Rodríguez, A., Monteverde, F., et al.: Characterisation and high temperature mechanical properties of zirconium boride-based materials. J. Eur. Ceram. Soc. 22, 2543–2549 (2002)

    Article  Google Scholar 

  36. Zou, J., Zhang, G.J., Hu, C.F., Nishimura, T., Sakka, Y., Vleugels, J., Van der Biest, O.: Strong ZrB2-SiC-WC ceramics at 1600 °C. J. Am. Ceram. Soc. 95, 874–878 (2012)

    Google Scholar 

  37. Wang, L.L., Kong, D.W., Fang, G.D., et al.: High-temperature tensile strength and fracture behavior of ZrB2-SiC-graphite composite. Int. J. Appl. Ceram. Technol. 14, 31–38 (2017)

    Article  Google Scholar 

  38. Zhang, R.B., Cheng, X.M., Fang, D.N., et al.: Ultra-high-temperature tensile properties and fracture behavior of ZrB2-based ceramics in air above 1500 °C. Mater. Des. 52, 17–22 (2013)

    Article  Google Scholar 

  39. Cheng, X.M., Qu, Z.L., He, R.J., et al.: An ultra-high temperature testing instrument under oxidation environment up to 1800 °C. Rev. Sci. Instrum. 87, 045108 (2016)

    Article  Google Scholar 

  40. Cheng, T.B.: Tensile properties of ZrB2-SiC ultra-high temperature ceramics up to 2050 °C. In preparation.

  41. Cheng, T.B., Li, W.G., Fang, D.N.: Thermal shock resistance of ultra-high-temperature ceramics under aerodynamic thermal environments. AIAA J. 51, 840–848 (2013)

    Article  Google Scholar 

  42. Cheng, T.B., Li, W.G., Zhang, C.Z., et al.: Unified thermal shock resistance of ultra-high temperature ceramics under different thermal environments. J. Therm. Stresses 37, 14–33 (2014)

    Article  Google Scholar 

  43. Cheng, T.B., Li, W.G., Lu, W., et al.: Thermal shock resistance of ultra-high-temperature ceramic thermal protection system. J. Spacecraft Rockets 51, 986–990 (2014)

    Article  Google Scholar 

  44. Cheng, T.B., Zhang, R.B., Pei, Y.M., et al.: Tensile properties of two-dimensional carbon fiber reinforced silicon carbide composites at temperatures up to 1800 °C in air. Extreme Mech. Lett. 31, 100546 (2019)

    Article  Google Scholar 

  45. Cheng, T.B.: Insights into fracture mechanisms and strength behaviors of two-dimensional carbon fiber reinforced silicon carbide composites at elevated temperatures. J. Eur. Ceram. Soc. 42, 71–86 (2022)

  46. Cheng, T.B., Wang, X.R., Zhang, R.B., et al.: Tensile properties of two-dimensional carbon fiber reinforced silicon carbide composites at temperatures up to 2300°C. J. Eur. Ceram. Soc. 40, 630–635 (2020)

    Article  Google Scholar 

  47. Cheng, T.B., Qu, Z.L., Li, W.G., et al.: Fracture strength behaviors of ultra-high-temperature materials. J. Appl. Mech. 87, 031006 (2020)

    Article  Google Scholar 

  48. Cheng, T.B.: Ultra-high-temperature mechanical behaviors of two-dimensional carbon fiber reinforced silicon carbide composites: Experiment and modeling. J. Eur. Ceram. Soc. 41, 2335–2346 (2021)

    Article  Google Scholar 

  49. Cheng, T.B., Zhang, R.B., Pei, Y.M., et al.: Flexural properties of carbon-carbon composites at temperatures up to 2600°C. Mater. Res. Express 6, 085629 (2019)

    Article  Google Scholar 

  50. Cheng, T.B., Li, W.G., Li, Q.M., et al.: The bending strength of bulk polycrystalline alumina from room temperature to melting point. High Temp. High Press. 43, 285–295 (2014)

    Google Scholar 

  51. Cheng, T.B.: Strength and Thermal Shock Resistance of Advanced High-Temperature Materials. Chongqing University (2016). [Ph.D. thesis]

    Google Scholar 

  52. Han, J.C., He, X.D., Du, S.Y., et al.: Direct heating methods for measuring mechanical properties of multi-directional C/C composites at high temperature. J. Astronaut. 15, 17–23 (1994)

    Google Scholar 

  53. Xu, C.H., Xu, D.S., Song, L.Y., et al.: Experimental investigation on compressive properties of 2D C/C composites at ultra-high temperature. J. Solid Rocket Technol. 38, 860–864 (2015)

    Google Scholar 

  54. Qiao, S.R., Li, M., Han, D., et al.: Flexural performance of 3D-C/SiC composites at high temperature and influence of post-heat-treatment on flexural performance. J. Mech. Strength 25, 495–498 (2003)

    Google Scholar 

  55. Johnson, G.R.: A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures. In: Proc 7th Inf Sympo Ballistics, pp. 541–547 (1983)

  56. Zhang, D.N., Shangguan, Q.Q., Xie, C.J., et al.: A modified Johnson-Cook model of dynamic tensile behaviors for 7075–T6 aluminum alloy. J. Alloys Compd. 619, 186–194 (2015)

    Article  Google Scholar 

  57. Li, H.Y., Wang, X.F., Duan, J.Y., et al.: A modified Johnson Cook model for elevated temperature flow behavior of T24 steel. Mat. Sci. Eng. A 577, 138–146 (2013)

    Article  Google Scholar 

  58. Cai, J., Wang, K., Zhai, P., et al.: A modified Johnson-Cook constitutive equation to predict hot deformation behavior of Ti-6Al-4V Alloy. J. Mater. Eng. Perform. 24, 32–44 (2015)

    Article  Google Scholar 

  59. Mirkoohi, E., Tran, H.C., Lo, Y.L., et al.: Analytical modeling of residual stress in laser powder bed fusion considering part’s boundary condition. Curr. Comput. Aided Drug Des. 10, 337 (2020)

    Google Scholar 

  60. Liu, Z., Wang, X., Jiao, X., Wu, Y., Liu, G.: Prediction of microstructure evolution during hot gas forming of Ti2AlNb-based alloy tubular component with square cross-section. Procedia Manuf. 15, 1156–1163 (2018)

    Article  Google Scholar 

  61. Chen, L., Liu, W., Yu, L., et al.: Probabilistic and constitutive models for ductile-to-brittle transition in steels: a competition between cleavage and ductile fracture. J. Mech. Phys. Solids 135, 103809 (2020)

    Article  MathSciNet  Google Scholar 

  62. Lin, Y.C., Chen, X.M., Liu, G.: A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel. Mater. Sci. Eng. A 527, 6980–6986 (2010)

    Article  Google Scholar 

  63. Tan, J.Q., Zhan, M., Liu, S., et al.: A modified Johnson-Cook model for tensile flow behaviors of 7050–T7451 aluminum alloy at high strain rates. Mater. Sci. Eng. A 631, 214–219 (2015)

    Article  Google Scholar 

  64. Khan, A.S., Liu, H.: Variable strain rate sensitivity in an aluminum alloy: response and constitutive modeling. Int. J. Plasticity 36, 1–14 (2012)

    Article  Google Scholar 

  65. Chaboche, J.L.: A continuum damage theory with anisotropic and unilateral damage. La Recherche Aérospatiale 139–147 (1995)

  66. Carol, I., Rizzi, E., Willam, K.: On the formulation of anisotropic elastic degradation. I. Theory based on a pseudo-logarithmic damage tensor rate. Int. J. Solids Struct. 38, 491–518 (2001)

  67. Allen, D., Harris, C., Groves, S.: A thermomechanical constitutive theory for elastic composites with distributed damage—I. Theoretical development. Int. J. Solids Struct. 23, 1301–1318 (1987)

    Article  MATH  Google Scholar 

  68. Maire, J., Lesne, P.: A damage model for ceramic matrix composites. Aerosp. Sci. Technol. 1, 259–266 (1997)

    Article  MATH  Google Scholar 

  69. Gao, X.G., Li, L., Song, Y.D.: A temperature-dependent constitutive model for fiber-reinforced ceramic matrix composites and structural stress analysis. Int. J. Damage Mech. 23, 507–522 (2013)

    Google Scholar 

  70. Yang, C.P., Zhang, L., Wang, B., et al.: Tensile behavior of 2D-C/SiC composites at elevated temperatures: experiment and modeling. J. Eur. Ceram. Soc. 37, 1281–1290 (2017)

    Article  Google Scholar 

  71. Chen, Y.F.: Mechanical behavior of advanced composites and structures at various temperatures. South China University of Technology (2018). [Ph.D. thesis]

  72. Yang, Z., Liu, H.: An elastic-plastic constitutive model for thermal shocked oxide/oxide ceramic-matrix composites. Int. J. Mech. Sci. 175, 105528 (2020)

    Article  Google Scholar 

  73. Krstic. V.D.: Fracture of brittle solids in the presence of thermoelastic stresses. J. Am. Ceram. Soc. 67, 589–593 (1984)

  74. Krstic. V.D.: Grain-size dependence of fracture stress in anisotropic brittle solids. J. Mater. Sci. 23, 259–266 (1988)

  75. Effect of microstructure on fracture of brittle materials: Krstic. V.D. Unified approach. Theor. Appl. Fract. Mec. 45, 212–226 (2006)

    Google Scholar 

  76. Green, D.J.: Stress-induced microcracking at second-phase inclusions. J. Am. Ceram. Soc. 64, 138–141 (1981)

    Article  Google Scholar 

  77. Shigeyuki, S.: Handbook of Advanced Ceramics, 2nd edn. Elsevier, New York (2013)

    Google Scholar 

  78. Golla, B.R., Mukhopadhyay, A., Basu, B., et al.: Review on ultra high temperature boride ceramics. Prog. Mater. Sci. 111, 100651 (2020)

    Article  Google Scholar 

  79. Li, W.G., Yang, F., Fang, D.N.: The temperature-dependent fracture strength model for ultra-high temperature ceramics. Acta Mech. Sin. 26, 235–239 (2010)

    Article  MATH  Google Scholar 

  80. Li, W.G., Li, D.J., Zhang, C.Z., et al.: Modelling the effect of temperature and damage on the fracture strength of ultra-high temperature ceramics. Int. J. Fract. 176, 181–188 (2012)

    Article  Google Scholar 

  81. Wang, R.Z., Li, W.G., Ji, B.H., et al.: Fracture strength of the particulate-reinforced ultra-high temperature ceramics based on a temperature dependent fracture toughness model. J. Mech. Phys. Solids 107, 365–378 (2017)

    Article  MathSciNet  Google Scholar 

  82. Justin, J.F., Jankowiak, A.: Ultra high temperature ceramics: densification, properties and thermal stability. J. Aerosp. Lab. 08, 1–8 (2011)

    Google Scholar 

  83. Wang, R.Z., Li, W.G.: Effects of microstructures and flaw evolution on the fracture strength of ZrB2–MoSi2 composites under high temperatures. J. Alloys Compd. 644, 582–588 (2015)

    Article  Google Scholar 

  84. Balbo, A., Sciti, D.: Spark plasma sintering and hot pressing of ZrB2-MoSi2 ultra-high- temperature ceramics. Mater. Sci. Eng. A 475, 108–112 (2008)

    Article  Google Scholar 

  85. Silvestroni, L., Sciti, D.: Effects of MoSi2 additions on the properties of Hf- and Zr-B2 composites produced by pressureless sintering. Scr. Mater. 57, 165–168 (2007)

    Article  Google Scholar 

  86. Deng, Y., Li, W.G., Wang, R.Z., et al.: The temperature-dependent fracture models for fiber-reinforced ceramic matrix composites. Compos. Struct. 140, 534–539 (2016)

    Article  Google Scholar 

  87. Shao, J.X., Li, W.G., Deng, Y., et al.: Theoretical models and influencing factor analysis for the temperature-dependent tensile strength of ceramic fibers and their unidirectional composites. Compos. Struct. 164, 23–31 (2017)

    Article  Google Scholar 

  88. Cao, H., Thouless, M.D.: Tensile tests of ceramic-matrix composites: theory and experiment. J. Am. Ceram. Soc. 73, 2091–2094 (1990)

    Article  Google Scholar 

  89. Gyekenyesi, J.Z.: High temperature mechanical characterization of ceramic matrix composites. NASA/CRm1998–206611, Cleveland: Cleveland State University (1998)

  90. Deng, Y., Li, W.G., Wang, X.R., et al.: Temperature-dependent tensile strength model for 2D woven fiber reinforced ceramic matrix composites. J. Am. Ceram. Soc. 101, 5157–5165 (2018)

    Article  Google Scholar 

  91. Guo, S.H., Kagawa, Y.: Temperature dependence of tensile strength for a woven Boron-Nitride-Coated Hi-NicalonTM SiC fiber-reinforced silicon-carbide-matrix composite. J. Am. Ceram. Soc. 84, 2079–2085 (2001)

    Article  Google Scholar 

  92. Guo, S.H., Kagawa, Y.: Tensile fracture behavior of continuous SiC fiber-reinforced SiC matrix composites at elevated temperatures and correlation to in situ constituent properties. J. Eur. Ceram. Soc. 22, 2349–2356 (2002)

    Article  Google Scholar 

  93. Wang, R.Z., Li, D.Y., Xing, A., et al.: Temperature dependent fracture strength model for the laminated ZrB2 based composites. Compos. Struct. 162, 39–46 (2017)

    Article  Google Scholar 

  94. Wei, C.C., Zhang, X.H., Hu, P., et al.: The fabrication and mechanical properties of bionic laminated ZrB2-SiC/BN ceramic prepared by tape casting and hot pressing. Scr. Mater. 65, 791–794 (2011)

    Article  Google Scholar 

  95. Wei, C.C., Liu, X.C., Niu, J.Y., et al.: High temperature mechanical properties of laminated ZrB2-SiC based ceramics. Ceram. Int. 42, 18148–18153 (2016)

    Article  Google Scholar 

  96. Wang, R.Z., Li, D.Y., Wang, X.R., et al.: A novel and convenient temperature dependent fracture strength model for the laminated ultra-high temperature ceramic composites. J. Alloys Compd. 771, 9–14 (2019)

    Article  Google Scholar 

  97. Wang, R.Z., Li, D.Y., Wang, X.R., et al.: Temperature dependent fracture toughness of the particulate-reinforced ultra-high-temperature-ceramics considering effects of change in critical flaw size and plastic power. Compos. Part B 158, 28–33 (2019)

    Article  Google Scholar 

  98. Wang, R.Z., Wang, S., Li, D.Y., et al.: Theoretical characterization of the temperature dependence of the contact mechanical properties of the particulate-reinforced ultra-high temperature ceramic matrix composites in Hertzian contact. Int. J. Solids Struct. 214–215, 35–44 (2021)

    Article  Google Scholar 

  99. Wang, R.Z., Li, W.G.: Determining fracture strength and critical flaw of the ZrB2–SiC composites on high temperature oxidation using theoretical method. Compos. Part B 129, 198–203 (2017)

    Article  Google Scholar 

  100. Wang, R.Z., Li, W.G.: Characterization models for thermal shock resistance and fracture strength of ultra-high temperature ceramics at high temperatures. Theor. Appl. Fract. Mec. 90, 1–13 (2017)

    Article  Google Scholar 

  101. Lamouroux, F., Naslain, R., Jouin, J.M.: Kinetics and mechanisms of oxidation of 2D woven C/SiC composites: II. Theoretical approach. J. Am. Ceram. Soc. 77(8), 2058–2068 (1994)

    Article  Google Scholar 

  102. Strungar, E.M., Yankin, A.S., Zubova, E.M., et al.: Experimental study of shear properties of 3D woven composite using digital image correlation and acoustic emission. Acta Mech. Sin. 36, 448–459 (2020)

    Article  Google Scholar 

  103. Hatta, H., Aoki, T., Kogo, Y., et al.: High-temperature oxidation behavior of SiC-coated carbon fiber-reinforced carbon substrate composites. Compos. Part A 30(4), 515–520 (1999)

    Article  Google Scholar 

  104. Yang, C.P., Jiao, G.Q., Wang, B., et al.: Mechanical degradation mechanisms of 2D-C/SiC composites: influences of preloading and oxidation. J. Eur. Ceram. Soc. 35(10), 2765–2773 (2015)

    Article  Google Scholar 

  105. Mei, H., Zhang, D., Xia, J., et al.: The effect of hole defects on the oxidation behaviour of two-dimensional C/SiC composites. Ceram. Int. 42(14), 15479–15484 (2016)

    Article  Google Scholar 

  106. Chou, K.C.: A kinetic model for oxidation of Si-Al-O-N materials. J. Am. Ceram. Soc. 89(5), 1568–1576 (2006)

    Article  Google Scholar 

  107. Ruan, J.L., Pei, Y., Fang, D.: Residual stress analysis in the oxide scale/metal substrate system due to oxidation growth strain and creep deformation. Acta Mech. 223(12), 2597–2607 (2012)

    Article  Google Scholar 

  108. Huntz, A.M., Calvarin Amiri, G., Evans, H.E., Cailletaud, G.: Comparison of oxidation-growth stresses in NiO scale measured by deflection and calculated using creep analysis or finite-element modeling. Oxid. Met. 57(5/6), 499–521 (2002)

    Article  Google Scholar 

  109. Ruan, J.L., Pei, Y., Fang, D.: On the elastic and creep stress analysis modeling in the oxide scale/metal substrate system due to oxidation growth strain. Corros. Sci. 66, 315–323 (2013)

    Article  Google Scholar 

  110. Dong, X., Feng, X., Hwang, K.C.: Oxidation stress evolution and relaxation of oxide scale/metal substrate system. J. Appl. Phys. 112(2), 023502 (2012)

    Article  Google Scholar 

  111. Dong, X., Fang, X., Feng, X., et al.: Diffusion and stress coupling effect during oxidation at high temperature. J. Am. Ceram. Soc. 96(1), 44–46 (2013)

    Article  Google Scholar 

  112. Dang, H., Liu, P., Zhang, Y., et al.: Theoretical prediction for effective properties and progressive failure of textile composites: a generalized multi-scale approach. Acta Mech. Sin. (2021)

  113. Chen, Y., Shi, X., Zhao, Z., et al.: A thermo-viscoelastic model for particle-reinforced composites based on micromechanical modeling. Acta Mech. Sin. 37(3), 402–413 (2021)

    Article  MathSciNet  Google Scholar 

  114. Dong, X., Feng, X., Hwang, K.C.: Stress–diffusion interaction during oxidation at high temperature. Chem Phys. Lett. 614, 95–98 (2014)

    Article  Google Scholar 

  115. Zhou, Z., Peng, X., Wei, Z.: A thermo-chemo-mechanical model for the oxidation of zirconium diboride. J. Am. Ceram. Soc. 98(2), 629–636 (2014)

    Article  Google Scholar 

  116. Tolpygo, V.K., Clarke, D.R.: Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation. Acta Mater. 48(13), 3283–3293 (2000)

    Article  Google Scholar 

  117. Aifantis, E.C.: On the problem of diffusion in solids. Acta Mech. 37(3/4), 265–296 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  118. Guo, X.H., Shi, S.Q., Qiao, L.J.: Simulation of hydrogen diffusion and initiation of hydrogen-induced cracking in PZT ferroelectric ceramics using a phase field model. J. Am. Ceram. Soc. 90(9), 2868–2872 (2007)

    Article  Google Scholar 

  119. Yang, F., Liu, B., Fang, D.: Analysis on high-temperature oxidation and growth stress of iron-based alloy using phase field method. Appl. Math. Mech. Engl. 32(6), 757–764 (2011)

    Article  MATH  Google Scholar 

  120. Tolpygo, V.K., Clarke, D.R.: Competition between stress generation and relaxation during oxidation of an Fe-Cr-Al-Y alloy. Oxid. Met. 49(1/2), 187–212 (1998)

    Article  Google Scholar 

  121. Wang, C., Ai, S., Fang, D.: A phase-field study on the oxidation behavior of Ni considering heat conduction. Acta Mech. Sin. 32(5), 881–890 (2016)

    Article  Google Scholar 

  122. Wang, C., Ai, S., Fang, D.: Effect of oxidation-induced material parameter variation on the high temperature oxidation behavior of nickel. Acta Mech. Solida Sin. 29(4), 337–344 (2016)

    Article  Google Scholar 

  123. Fei, W., Kuiry, S.C., Seal, S.: Inhibition of metastable alumina formation on Fe-Cr-Al-Y alloy fibers at high temperature using titania coating. Oxid. Met. 62(1/2), 29–44 (2004)

    Article  Google Scholar 

  124. Yang, F., Fang, D.N., Liu, B.: A theoretical model and phase field simulation on the evolution of interface roughness in the oxidation process. Model. Simul. Mater. Sci. 20(1), 015001 (2012)

    Article  Google Scholar 

  125. Carim, A.H., Sinclair, R.: The evolution of Si/Sio2 interface roughness. J. Electrochem. Soc. 134(3), 741–746 (1987)

    Article  Google Scholar 

  126. Alam, M.Z., Das, D.K.: Effect of cracking in diffusion aluminide coatings on their cyclic oxidation performance on Ti-based IMI-834 alloy. Corros. Sci. 51(6), 1405–1412 (2009)

    Article  Google Scholar 

  127. Wang, J., Zhang, T.Y.: Phase field simulations of polarization switching-induced toughening in ferroelectric ceramics. Acta Mater. 55(7), 2465–2477 (2007)

    Article  Google Scholar 

  128. Henry, H., Levine, H.: Dynamic instabilities of fracture under biaxial strain using a phase field model. Phys. Rev. Lett. 93(10) (2004)

  129. Jin, Y.M., Wang, Y.U., Khachaturyan, A.G.: Three-dimensional phase field microelasticity theory and modeling of multiple cracks and voids. Appl. Phys. Lett. 79(19), 3071–3073 (2001)

    Article  Google Scholar 

  130. Rice, J.R.: Some remarks on elastic crack-tip stress fields. Int. J. Solids Struct. 8(6), 751–758 (1972)

    Article  MATH  Google Scholar 

  131. Yang, F., Liu, B., Fang, D.: Interplay between fracture and diffusion behaviors: modeling and phase field computation. Comp. Mater. Sci. 50(9), 2554–2560 (2011)

    Article  Google Scholar 

  132. Wang, C., Zhang, R., Pei, Y., et al.: Phase field simulation for high-temperature oxidation behavior of thermal barrier coatings under shot peening. Int. J. Appl. Mech. 4(4), 1250038 (2012)

    Article  Google Scholar 

  133. Chen, X., Sun, Z., Sun, J., et al.: Multi-scale model of residual strength of 2D plain weave C/SiC composites in oxidation atmosphere. Appl. Compos. Mater. 24(1), 1–22 (2017)

    Article  Google Scholar 

  134. Zhao, Y., Ai, S., Fang, D.: Elasto-plastic phase field modelling of oxidation of zirconium alloys. Int. J. Solids Struct. 134, 30–42 (2018)

    Article  Google Scholar 

  135. Sullivan, R.M.: A model for the oxidation of carbon silicon carbide composite structures. Carbon 43(2), 275–285 (2005)

    Article  Google Scholar 

  136. Mei, H., Cheng, L., Zhang, L., et al.: Modeling the effects of thermal and mechanical load cycling on a C/SiC composite in oxygen/argon mixtures. Carbon 45(11), 2195–2204 (2007)

    Article  Google Scholar 

  137. Luan, X., Cheng, L., Zhang, J., et al.: Effects of temperature and stress on the oxidation behavior of a 3D C/SiC composite in a combustion wind tunnel. Compos. Sci. Technol. 70(4), 678–684 (2010)

    Article  Google Scholar 

  138. Xu, Y., Zhang, W.: Numerical modelling of oxidized microstructure and degraded properties of 2D C/SiC composites in air oxidizing environments below 800°C. Mat. Sci. Eng. A 528(27), 7974–7982 (2011)

    Article  Google Scholar 

  139. Xu, Y., Zhang, P., Lu, H., et al.: Numerical modeling of oxidized C/SiC microcomposite in air oxidizing environments below 800 °C: Microstructure and mechanical behavior. J. Eur. Ceram. Soc. 35(13), 3401–3409 (2015)

    Article  Google Scholar 

  140. Zhao, Y.N., Chen, Y.F., He, C.W., et al.: A damage-induced short-circuit diffusion model applied to the oxidation calculation of ceramic substrate composites (CMCs). Compos. Part A 127, 105621 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daining Fang or Weiguo Li.

Additional information

Executive Editor: Yujie Wei

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, D., Li, W., Cheng, T. et al. Review on mechanics of ultra-high-temperature materials. Acta Mech. Sin. 37, 1347–1370 (2021). https://doi.org/10.1007/s10409-021-01146-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01146-3

Keywords

Navigation