Skip to main content
Log in

Formation of High-Oxidation-Resistant NiAl Surface Layer by Simultaneous Electrodeposition of Al and Zr in Molten Salt

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

A coating layer consisting of Zr-containing NiAl was prepared by the simultaneous electrodeposition of Al and Zr using a molten salt as the medium. In particular, the morphology and chemical composition of the coating layer were investigated based on the influence of the ZrF4 concentration of the bath and the electrodeposition potential. Furthermore, in the surface layer consisting of the NiAl phase, the Zr concentration was measured by ICP analysis of the solution in which the surface layer was dissolved. For the prepared samples, the cyclic oxidation resistance was evaluated in air at 1423 K. For the Ni sample after the electrodeposition in a NaCl–KCl–3.5 mol%AlF3 bath without ZrF4 at − 1.5 V, a surface layer consisting of Ni2Al3 was formed. On the other hand, when the simultaneous electrodeposition of Al and Zr was carried out in a NaCl–KCl–3.5 mol%AlF3 salt containing 0.05 mol%ZrF4 at − 1.3 V and the molten salt containing 0.1 mol%ZrF4 at − 1.3 ~ − 1.5 V, the formation of a surface layer consisting of NiAl was observed. In particular, by the simultaneous electrodeposition in the molten salt containing 0.1 mol% ZrF4 at − 1.5 V, a thick surface layer consisting of NiAl (about 40 μm) was formed. Furthermore, the detailed analysis of the Zr concentration in the surface layer revealed that the Zr content in the layer was 0.05 at%. Cyclic oxidation tests revealed that a mass loss was observed for the samples coated with the NiAl layer formed by the electrodeposition of only Al. However, for the sample coated with the NiAl layer containing a small amount of Zr, no decrease in the mass due to exfoliation of the oxide was observed. After the cyclic oxidation tests, a scale consisting of α-Al2O3 with good adhesion to the substrate metal was formed on the samples coated with the NiAl layer containing a small amount of Zr. This scale included ZrO2 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. A. Pint, Surface and Coating Technology 188–189, 2004 (71).

    Article  Google Scholar 

  2. S. Taniguchi, T. Shibata and H. Tsuruoka, Oxidation of Metals 26, 1986 (1).

    Article  Google Scholar 

  3. J. M. Francis and J. A. Jutson, Corrosion Science 8, 1968 (445).

    Article  Google Scholar 

  4. J. L. Tein and F. S. Pettit, Metallurgical Transactions 3, 1972 (1587).

    Article  Google Scholar 

  5. A. S. Kahn, C. E. Lowell and C. A. Barrett, Journal of the Electrochemical Society 127, 1980 (670).

    Article  Google Scholar 

  6. B. A. Pint, I. G. Wright, W. Y. Lee, Y. Zhang, K. Prüßner and K. B. Alexander, Materials Science and Engineering A 245, 1998 (201).

    Article  Google Scholar 

  7. C. H. Xu, W. Gao and H. Gong, Intermetallics 8, 2000 (769).

    Article  Google Scholar 

  8. C. Houngninou, S. Chevalier and J. P. Larpin, Applied Surface Science 236, 2004 (256).

    Article  Google Scholar 

  9. D. B. Lee and M. L. Santella, Materials Science and Engineering A 374, 2004 (217).

    Article  Google Scholar 

  10. Y. Wang and W. Chen, Microstructures. Surface and Coating Technology 183, 2004 (18).

    Article  Google Scholar 

  11. M. H. Enayati, F. Karimzadeh, M. Jafari, A. Markazi and A. Tahvilian, Wear 309, 2014 (192).

    Article  Google Scholar 

  12. R. Bianco and R. A. Rapp, Journal of the Electrochemical Society 140, 1993 (1181).

    Article  Google Scholar 

  13. S. Hamadi, M.-P. Bacos, M. Polain, A. Seyeux, V. Maurice and P. Marcus, Surface and Coating Technology 204, 2009 (756).

    Article  Google Scholar 

  14. M. Ueda, D. Susukida, S. Konda and T. Ohtsuka, Surface and Coating Technology 176, 2004 (202).

    Article  Google Scholar 

  15. M. Gibilaro, L. Massot, P. Chamelot and P. Taxil, Journal of Alloys and Compounds 417, 2009 (412).

    Article  Google Scholar 

  16. H. L. Chan and J. Yun, Electrochemistry Communications 84, 2017 (86).

    Article  Google Scholar 

  17. D. Quaranta, L. Massot, M. Gibilaro, E. Mendes, J. Serp and P. Chamelot, Electrochemica Acta 265, 2018 (586).

    Article  Google Scholar 

  18. M. Fukumoto, T. Saruta, M. Hara and T. Narita, Journal of the Japan Institute of Metals 71, 2007 (41).

    Article  Google Scholar 

  19. M. Fukumoto, T. Yokota, M. Hara and T. Narita, Journal of the Japan Institute of Metals 74, 2010 (584).

    Article  Google Scholar 

  20. Q. Chen, L. H. Huang, H. S. Liu, F. Zheng and Z. P. Jin, Journal of Phase Equilibria and Diffusion 34, 2013 (390).

    Article  Google Scholar 

  21. M. Fukumoto, T. Rikiishi, K. Sugita and M. Hara, Journal of the Japan Institute of Metals 77, 2013 (218).

    Article  Google Scholar 

  22. C. Guang-sen, M. Okido and T. Oki, Journal of Applied Electrochemistry 20, 1990 (77).

    Article  Google Scholar 

  23. H. Okamoto, Journal of Phase Equilibria and Diffusion 25, 2004 (394).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michihisa Fukumoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukumoto, M., Watanabe, F., Saito, K. et al. Formation of High-Oxidation-Resistant NiAl Surface Layer by Simultaneous Electrodeposition of Al and Zr in Molten Salt. Oxid Met 91, 381–394 (2019). https://doi.org/10.1007/s11085-019-09887-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09887-0

Keywords

Navigation