Skip to main content

Advertisement

Log in

Effect of Laser Spot Size, Scanning Strategy, Scanning Speed, and Laser Power on Microstructure and Mechanical Behavior of 316L Stainless Steel Fabricated via Selective Laser Melting

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Selective laser melting (SLM) is a promising additive manufacturing process for fabricating complex geometries of metallic parts. The SLM processing parameters can have a major effect on microstructure and mechanical behavior of the fabricated metallic parts. In this work, the effect of laser spot size, hatch spacing, energy density, scan strategy, scanning speed and laser power on the microstructure and mechanical behavior of SLM-processed 316L stainless steel samples has been studied. These samples processed with different processing parameters were characterized by performing microhardness, tensile tests, x-ray diffraction (XRD) analysis, Energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM) analysis. The samples fabricated with a larger laser spot size exhibited higher tensile strength as well as higher microhardness values. A similar trend was observed for samples processed with higher laser power and hatch spacing. For the same energy density, higher laser power and lower scanning speed significantly enhance the mechanical properties of SLM processed samples compared to those fabricated with lower laser power and higher scanning speed. Therefore, it can be concluded that laser power has a more dominant role in governing the mechanical properties of SLM processed parts than scanning speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. K. Antony, N. Arivazhagan and K. Senthilkumaran, Numerical and Experimental Investigations on Laser Melting of Stainless Steel 316L Metal Powders, J. Manuf. Process., 2014, 16(3), p 345–355.

    Article  Google Scholar 

  2. L. Hao, S. Dadbakhsh, O. Seaman and M. Felstead, Selective Laser Melting of a Stainless Steel and Hydroxyapatite Composite for Load-Bearing Implant Development, J. Mater. Process. Technol., 2009, 209(17), p 5793–5801.

    Article  CAS  Google Scholar 

  3. W. Meiners, K. Wissenbach, R. Poprawe, Direct Selective Laser Sintering of Steel Powder, in Proceedings of the LANE’97 (1997). p 615-622

  4. T. Larimian and T. Borkar, Additive Manufacturing of In Situ Metal Matrix Composites, Emerging Materials. B. AlMangour Ed., Springer, Cham, 2019, p 1–28

    Google Scholar 

  5. D.D. Gu, W. Meiners, K. Wissenbach and R. Poprawe, Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms, Int. Mater. Rev., 2012, 57(3), p 133–164.

    Article  CAS  Google Scholar 

  6. B. Al-Mangour, Powder Metallurgy of Stainless Steel: State-of-the Art, Challenges, and Development. Stainless Steel: Microstructure, Mechanical Properties and Methods of Application, Nova Science Publishers, Hauppauge, 2015, p 37–80

    Google Scholar 

  7. J. Lawrence, H.R. Chew, C.K. Chong and L. Hao, Laser Modification of the Wettability Characteristics of a 316L Stainless Steel Bio-metal and the Effects Thereof on Human Fibroblast Cell Response, Lasers Eng., 2005, 15(1–2), p 75–90.

    CAS  Google Scholar 

  8. I. Yadroitsev, P. Bertrand and I. Smurov, Parametric Analysis of the Selective Laser Melting Process, Appl. Surf. Sci., 2007, 253(19), p 8064–8069.

    Article  CAS  Google Scholar 

  9. Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, T.T. Roehling and R.T. Ott, Additively Manufactured Hierarchical Stainless Steels with High Strength and Ductility, Nat. Mater., 2018, 17(1), p 63–71.

    Article  CAS  Google Scholar 

  10. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina and R.B. Wicker, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, J. Mater. Sci. Technol., 2012, 28(1), p 1–14.

    Article  CAS  Google Scholar 

  11. K. Saeidi, X. Gao, Y. Zhong and Z.J. Shen, Hardened Austenite Steel with Columnar Sub-grain Structure Formed by Laser Melting, Mater. Sci. Eng. A, 2015, 625, p 221–229.

    Article  CAS  Google Scholar 

  12. Y. Zhong, L. Liu, S. Wikman, D. Cui and Z. Shen, Intragranular Cellular Segregation Network Structure Strengthening 316L Stainless Steel Prepared by Selective Laser Melting, J. Nucl. Mater., 2016, 470, p 170–178.

    Article  CAS  Google Scholar 

  13. B. Song, S. Dong, S. Deng, H. Liao and C. Coddet, Microstructure and Tensile Properties of Iron Parts Fabricated by Selective Laser Melting, Opt. Laser Technol., 2014, 56, p 451–460.

    Article  CAS  Google Scholar 

  14. S. Katayama (Ed.), Defect formation Mechanisms and Preventive Procedures in Laser Welding, in Handbook of Laser Welding Technologies (Woodhead Publishing, 2013). p 332–373

    Chapter  Google Scholar 

  15. P.M. Lipic, F.S. Bates and M.W. Matsen, Non-equilibrium Phase Behavior of Diblock Copolymer Melts and Binary Blends in the Intermediate Segregation Regime, J. Polym. Sci. Part B Polym. Phys., 1999, 37(16), p 2229–2238.

    Article  CAS  Google Scholar 

  16. F. Bertelli, C. Brito, I.L. Ferreira, G. Reinhart, H. Nguyen-Thi, N. Mangelinck-Noël, N. Cheung and A. Garcia, Cooling Thermal Parameters, Microstructure, Segregation and Hardness in Directionally Solidified Al-Sn-(Si; Cu) Alloys, Mater. Des., 2015, 72, p 31–42.

    Article  CAS  Google Scholar 

  17. N.J. Harrison, I. Todd and K. Mumtaz, Reduction of Micro-cracking in Nickel Superalloys Processed by Selective Laser Melting: A Fundamental Alloy Design Approach, Acta Mater., 2015, 94, p 59–68.

    Article  CAS  Google Scholar 

  18. A. Simchi, Direct Laser Sintering of Metal Powders: Mechanism, Kinetics and Microstructural Features, Mater. Sci. Eng. A, 2006, 428(1–2), p 148–158.

    Article  CAS  Google Scholar 

  19. E. Louvis, P. Fox and C.J. Sutcliffe, Selective Laser Melting of Aluminium Components, J. Mater. Process. Technol., 2011, 211(2), p 275–284.

    Article  CAS  Google Scholar 

  20. J. Simmons, M. Daeumer, A. Azizi, S.N. Schiffres, Local Thermal Conductivity Mapping of Selective Laser Melted 316L Stainless Steel, in Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference (2018). p 1-14

  21. D. Wang, C. Song, Y. Yang and Y. Bai, Investigation of Crystal Growth Mechanism During Selective Laser Melting and Mechanical Property Characterization of 316L Stainless Steel Parts, Mater. Des., 2016, 100, p 291–299.

    Article  CAS  Google Scholar 

  22. G. Miranda, S. Faria, F. Bartolomeu, E. Pinto, S. Madeira, A. Mateus, P. Carreira, N. Alves, F.S. Silva and O. Carvalho, Predictive Models for Physical and Mechanical Properties of 316L Stainless Steel Produced by Selective Laser Melting, Mater. Sci. Eng. A, 2016, 657, p 43–56.

    Article  CAS  Google Scholar 

  23. R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu and W. Jiang, Densification Behavior of Gas and Water Atomized 316L Stainless Steel Powder During Selective Laser Melting, Appl. Surf. Sci., 2010, 256(13), p 4350–4356.

    Article  CAS  Google Scholar 

  24. G.K.H. Chua, C.H. Wong, C.Y.Y. Choong, Investigation on the Integral Effects of Process Parameters on Properties of Selective Laser Melted Stainless Steel Parts (2018)

  25. D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng and X. Li, Bio-functional and Anti-corrosive 3D Printing 316L Stainless Steel Fabricated by Selective Laser Melting, Mater. Des., 2018, 152, p 88–101.

    Article  CAS  Google Scholar 

  26. A. Simchi and H. Pohl, Effects of Laser Sintering Processing Parameters on the Microstructure and Densification of Iron Powder, Mater. Sci. Eng. A, 2003, 359(1–2), p 119–128.

    Article  CAS  Google Scholar 

  27. K. Mumtaz and N. Hopkinson, Top Surface and Side Roughness of Inconel 625 Parts Processed Using Selective Laser Melting, Rapid Prototyp. J., 2009, 15, p 96–103.

    Article  Google Scholar 

  28. S.A. Khairallah and A. Anderson, Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder, J. Mater. Process. Technol., 2014, 214(11), p 2627–2636.

    Article  CAS  Google Scholar 

  29. Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe and L.C. Zhang, Microstructure, Defects and Mechanical Behavior of Beta-Type Titanium Porous Structures Manufactured by Electron Beam Melting and Selective Laser Melting, Acta Mater., 2016, 113, p 56–67.

    Article  CAS  Google Scholar 

  30. M. Ma, Z. Wang, M. Gao and X. Zeng, Layer Thickness Dependence of Performance in High-Power Selective Laser Melting of 1Cr18Ni9Ti Stainless Steel, J. Mater. Process. Technol., 2015, 215, p 142–150.

    Article  CAS  Google Scholar 

  31. K. Guan, Z. Wang, M. Gao, X. Li and X. Zeng, Effects of Processing Parameters on Tensile Properties of Selective Laser Melted 304 Stainless Steel, Mater. Des., 2013, 50, p 581–586.

    Article  CAS  Google Scholar 

  32. T. Larimian, M. Kannan, D. Grzesiak, B. AlMangour and T. Borkar, Effect of Energy Density and Scanning Strategy on Densification, Microstructure and Mechanical Properties of 316L Stainless Steel Processed via Selective Laser Melting, Mater. Sci. Eng. A, 2020, 770, p 138455.

    Article  CAS  Google Scholar 

  33. L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck and J.P. Kruth, A Study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2010, 58(9), p 3303–3312.

    Article  CAS  Google Scholar 

  34. Imagej.nih.gov/ij/

  35. W.L. Xu, C.J. Guo, T. Li and S.Q. Liu, Process Optimization of Methyl 2-Methoxy- 5-Aminosulfonyl Benzoate, MS&E, 2018, 382(2), p 022064.

    Google Scholar 

  36. K. Saeidi, M. Neikter, J. Olsén, Z.J. Shen and F. Akhtar, 316L Stainless Steel Designed to Withstand Intermediate Temperature, Mater. Des., 2017, 135, p 1–8.

    Article  CAS  Google Scholar 

  37. B. AlMangour, M. Luqman, D. Grzesiak, H. Al-Harbi and F. Ijaz, Effect of Processing Parameters on the Microstructure and Mechanical Properties of Co-Cr-Mo Alloy Fabricated by Selective Laser Melting, Mater. Sci. Eng. A, 2020, 792, p 139456.

    Article  CAS  Google Scholar 

  38. B. AlMangour, D. Grzesiak, T. Borkar and J.M. Yang, Densification Behavior, Microstructural Evolution, and Mechanical Properties of TiC/316L Stainless Steel Nanocomposites Fabricated by Selective Laser Melting, Mater. Des., 2018, 138, p 119–128.

    Article  CAS  Google Scholar 

  39. H.H. Zhu, L. Lu and J.Y.H. Fuh, Study on Shrinkage Behaviour of Direct Laser Sintering Metallic Powder, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2006, 220(2), p 183–190.

    Article  CAS  Google Scholar 

  40. Y.L. Lo, B.Y. Liu and H.C. Tran, Optimized Hatch Space Selection in Double- Scanning Track Selective Laser Melting Process, Int. J. Adv. Manuf. Technol., 2019, 105(7), p 2989–3006.

    Article  Google Scholar 

  41. D. Bäuerle, Laser Processing and Chemistry, Springer, Berlin, 2013.

    Google Scholar 

  42. E. Liverani, S. Toschi, L. Ceschini and A. Fortunato, Effect of Selective Laser Melting (SLM) Process Parameters on Microstructure and Mechanical Properties of 316L Austenitic Stainless Steel, J. Mater. Process. Technol., 2017, 249, p 255–263.

    Article  CAS  Google Scholar 

  43. M. Xia, D. Gu, G. Yu, D. Dai, H. Chen and Q. Shi, Influence of Hatch Spacing on Heat and Mass Transfer, Thermodynamics and Laser Processability During Additive Manufacturing of Inconel 718 Alloy, Int. J. Mach. Tools Manuf, 2016, 109, p 147–157.

    Article  Google Scholar 

  44. X. Zhou, K. Li, D. Zhang, X. Liu, J. Ma, W. Liu and Z. Shen, Textures Formed in a CoCrMo Alloy by Selective Laser Melting, J. Alloys Compd., 2015, 631, p 153–164.

    Article  CAS  Google Scholar 

  45. B.P. Kashyap and K. Tangri, On the Hall–Petch Relationship and Substructural Evolution in Type 316L Stainless Steel, Acta Metall. Mater., 1995, 43(11), p 3971–3981.

    Article  CAS  Google Scholar 

  46. M.L. Montero-Sistiaga, M. Godino-Martinez, K. Boschmans, J.P. Kruth, J. Van Humbeeck and K. Vanmeensel, Microstructure Evolution of 316L Produced by HP-SLM (High Power Selective Laser Melting), Addit. Manuf., 2018, 23, p 402–410.

    CAS  Google Scholar 

  47. Y. Wang, Y.T. Wang, R.D. Li, P.D. Niu, M.B. Wang, T.C. Yuan, K. Li, Hall–Petch Relationship in Selective Laser Melting Additively Manufactured Metals: Using Grain or Cell Size?, J. Cent. South Univ., 2021, 28(4), p 1043–1057.

    Article  Google Scholar 

  48. D. Kong, X. Ni, C. Dong, L. Zhang, C. Man, X. Cheng and X. Li, Anisotropy in the Microstructure and Mechanical Property for the Bulk and Porous 316L Stainless steel Fabricated via Selective Laser Melting, Mater. Lett., 2019, 235, p 1–5.

    Article  CAS  Google Scholar 

  49. J. Metelkova, Y. Kinds, K. Kempen, C. de Formanoir, A. Witvrouw and B. Van Hooreweder, On the Influence of Laser Defocusing in Selective Laser Melting of 316L, Addit. Manuf., 2018, 23, p 161–169.

    CAS  Google Scholar 

  50. O.O. Salman, C. Gammer, A.K. Chaubey, J. Eckert and S. Scudino, Effect of Heat Treatment on Microstructure and Mechanical Properties of 316L Steel Synthesized by Selective Laser melting, Mater. Sci. Eng., A, 2019, 748, p 205–212.

    Article  CAS  Google Scholar 

  51. T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka and E. Chlebus, Correlation Between Process Parameters, Microstructure and Properties of 316 L Stainless steel Processed by Selective Laser Melting, Mater. Sci. Eng. A, 2018, 718, p 64–73.

    Article  CAS  Google Scholar 

  52. P.L. Ferrandini, C.T. Rios, A.T. Dutra, M.A. Jaime, P.R. Mei and R. Caram, Solute Segregation and Microstructure of Directionally Solidified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2006, 435, p 139–144.

    Article  CAS  Google Scholar 

  53. J.W. Fu, Y.S. Yang, J.J. Guo and W.H. Tong, Effect of Cooling Rate on Solidification Microstructures in AISI 304 Stainless Steel, Mater. Sci. Technol., 2008, 24(8), p 941–944.

    Article  CAS  Google Scholar 

  54. J.W. Elmer, S.M. Allen and T.W. Eagar, Microstructural Development During Solidification of Stainless Steel Alloys, Metall. Trans. A, 1989, 20(10), p 2117–2131.

    Article  Google Scholar 

  55. O.O. Salman, F. Brenne, T. Niendorf, J. Eckert, K.G. Prashanth, T. He and S. Scudino, Impact of the Scanning Strategy on the Mechanical Behavior of 316L Steel Synthesized by Selective Laser Melting, J. Manuf. Process., 2019, 45, p 255–261.

    Article  Google Scholar 

  56. M. Yakout, M.A. Elbestawi and S.C. Veldhuis, A Study of Thermal Expansion Coefficients and Microstructure During Selective Laser Melting of Invar 36 and Stainless Steel 316L, Addit. Manuf., 2018, 24, p 405–418.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bandar AlMangour or Tushar Borkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larimian, T., AlMangour, B., Grzesiak, D. et al. Effect of Laser Spot Size, Scanning Strategy, Scanning Speed, and Laser Power on Microstructure and Mechanical Behavior of 316L Stainless Steel Fabricated via Selective Laser Melting. J. of Materi Eng and Perform 31, 2205–2224 (2022). https://doi.org/10.1007/s11665-021-06387-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06387-8

Keywords

Navigation