Skip to main content
Log in

Strain Induces Ferromagnetism in a Janus Transition Metal Dichalcogenides: CrSTe-1H Monolayer

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A Janus transition metal dichalcogenide’s structural, electronic, and magnetic properties in its two possible phases, namely CrSTe-1T and CrSTe-1H monolayer, are investigated using first-principles calculations. It is found that the CrSTe-1T monolayer is more stable than the CrSTe-1H monolayer by an amount of 0.4 eV at the equilibrium lattice constant. Due to the insurmountable energy barrier, diffusing the Te atom into the hexagon center in the CrSTe-1T monolayer is experimentally challenging. So, the CrSTe-1H monolayer is considered for further investigations, which has a hexagonal crystal structure. The calculated formation energy shows structural stability, while phonon dispersion indicates the kinetic stability of a Janus CrSTe-1H monolayer. Furthermore, the spin-polarized calculations show that the Janus CrSTe-1H monolayer is a non-magnetic semiconductor with a finite indirect electronic bandgap of 0.20 eV (\(\Gamma \) - M). However, applying a small biaxial tensile strain of 1.6%, the transition from non-magnetic to magnetic and semiconducting to half-metallic occurred. Further increasing the biaxial strain, the bandgap for the spin-down channel increases, and, interestingly, the half-metalicity is robust up to +10% biaxial tensile strain. In contrast, the bandgap increases with compressive strain up to \(-5 \%\) and then decreases up to \(-10 \%\), but no spin-polarization was induced. Furthermore, ferromagnetic (FM) and anti-ferromagnetic (AFM) interactions of a Janus CrSTe-1H monolayer were investigated. The calculated ΔE indicates that the AFM-1 (FM) state is more favorable under 0% (+6%) biaxial strain condition. The estimated exchange coupling parameter as \(J = 6.49\) meV under +6 \(\%\) biaxial strain results in near room-temperature ferromagnetism. Using the 2D Ising model, the Curie temperature (\(T_c\)) of 274.85 K for a Janus CrSTe-1H monolayer is estimated at \(+6 \%\) biaxial strain. These calculations predict that the 2D Janus CrSTe-1H monolayer is a candidate for electronic, spintronic, and photovoltaic devices. For example, for photovoltaic applications, the optical absorption is calculated. The optical absorption is about 10–20%, indicating larger absorption, so the Janus CrSTe-1H monolayer is a good sunlight harvester for photovoltaic applications.

Graphical Abstract

A Janus transition metal dichalcogenide’s structural, electronic, and magnetic properties in its two possible phases, namely CrSTe-1T and CrSTe-1H monolayer, are investigated using first-principles calculations. The spin-polarized calculations show that the Janus CrSTe-1H monolayer is a non-magnetic semiconductor with a finite indirect electronic bandgap of 0.20 eV (\(\Gamma \) - M). However, applying a small biaxial tensile strain of 1.6%, the transition from non-magnetic to magnetic and semiconducting to half-metallic occurred. Furthermore, ferromagnetic (FM) and anti-ferromagnetic (AFM) interactions of a Janus CrSTe-1H monolayer were investigated. The calculated \(\triangle \)E indicates that the AFM-1 (FM) state is more favorable under 0% (+6%) biaxial strain condition. The estimated exchange coupling parameter as \(J = 6.49\) meV under +6% biaxial strain results in near room-temperature ferromagnetism. Using the 2D Ising model, the Curie temperature (T\(_c\)) of 274.85 K for a Janus CrSTe-1H monolayer is estimated at +6% biaxial strain. These calculations predict that the 2D Janus CrSTe-1H monolayer is a candidate for electronic, spintronic, and photovoltaic devices. For example, for photovoltaic applications, the optical absorption is calculated. The optical absorption is about 10–20%, indicating larger absorption, so the Janus CrSTe-1H monolayer is a good sunlight harvester for photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010)

    Article  Google Scholar 

  2. H.P. Komsa, A.V. Krasheninnikov, Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B 86(24), 241201 (2012)

    Article  Google Scholar 

  3. K.F. Mak, K. He, C. Lee, G.H. Lee, J. Hone, T.F. Heinz, J. Shan, Tightly bound trions in monolayer MoS2. Nat. Mater. 12(3), 207–211 (2013)

    Article  CAS  Google Scholar 

  4. J. Zhang, J. Li, Z. Wang, X. Wang, W. Feng, W. Zheng, W. Cao, P. Hu, Low-temperature growth of large-area heteroatom-doped graphene film. Chem. Mater. 26(7), 2460–2466 (2014)

    Article  CAS  Google Scholar 

  5. A. Kuc, N. Zibouche, T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83(24), 245213 (2011)

    Article  Google Scholar 

  6. P. Blake, E. Hill, A. Castro Neto, K. Novoselov, D. Jiang, R. Yang, T. Booth, A. Geim, Making graphene visible. Appl. Phys. Lett. 91(6), 063124 (2007)

    Article  Google Scholar 

  7. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)

    Article  Google Scholar 

  8. M. Ezawa, Monolayer topological insulators: silicene, germanene, and stanene. J. Phys. Soc. Jpn. 84(12), 121003 (2015)

    Article  Google Scholar 

  9. Q. Zhang, Z. Ren, N. Wu, W. Wang, Y. Gao, Q. Zhang, J. Shi, L. Zhuang, X. Sun, L. Fu, Nitrogen-doping induces tunable magnetism in ReS\(_2\). Npj 2D Mater. Appl. 2(1), 1–8 (2018)

    Google Scholar 

  10. H.L. Zhuang, M.D. Johannes, M.N. Blonsky, R.G. Hennig, Computational prediction and characterization of single-layer CrS\(_2\). Appl. Phys. Lett. 104(2), 022116 (2014)

    Article  Google Scholar 

  11. A.B. Maghirang, Z.-Q. Huang, R.A.B. Villaos, C.-H. Hsu, L.-Y. Feng, E. Florido, H. Lin, A. Bansil, F.-C. Chuang, Predicting two-dimensional topological phases in Janus materials by substitutional doping in transition metal dichalcogenide monolayers. Npj 2D Mater. Appl. 3(1), 1–8 (2019)

    Article  CAS  Google Scholar 

  12. G.S. Khosa, S. Gupta, R. Kumar, First-principles investigations of electronic and thermoelectric properties of Janus Al2SSe monolayer. Phys. B 615, 413057 (2021)

    Article  CAS  Google Scholar 

  13. C. Ataca, H. Sahin, S. Ciraci, Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116(16), 8983–8999 (2012)

    Article  CAS  Google Scholar 

  14. H.L. Zhuang, R.G. Hennig, Electronic structures of single-layer boron pnictides. Appl. Phys. Lett. 101(15), 153109 (2012)

    Article  Google Scholar 

  15. H.L. Zhuang, A.K. Singh, R.G. Hennig, Computational discovery of single-layer iii–v materials. Phys. Rev. B 87(16), 165415 (2013)

    Article  Google Scholar 

  16. H.L. Zhuang, R.G. Hennig, Computational identification of single-layer CdO for electronic and optical applications. Appl. Phys. Lett. 103(21), 212102 (2013)

    Article  Google Scholar 

  17. G. Rahman, A.U. Rahman, S. Kanwal, P. Kratzer, Magnetic monolayer Li2N: density functional theory calculations. EPL (Europhysics Letters) 119(5), 57002 (2017)

    Article  Google Scholar 

  18. A. Acun, L. Zhang, P. Bampoulis, Mv. Farmanbar, A. van Houselt, A. Rudenko, M. Lingenfelder, G. Brocks, B. Poelsema, M. Katsnelson, H.J.W. Zandvliet, Germanene: the germanium analogue of graphene. J. Phys.: Condens. Matter 27(44), 443002 (2015)

    CAS  Google Scholar 

  19. C. Kamal, M. Ezawa, Arsenene: Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B 91(8), 085423 (2015)

    Article  Google Scholar 

  20. A.U. Rahman, G. Rahman, P. Kratzer, Enhanced electronic and magnetic properties by functionalization of monolayer GaS via substitutional doping and adsorption. J. Phys.: Condens. Matter 30(19), 195805 (2018)

    Google Scholar 

  21. C. Tan, X. Cao, X.J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.H. Nam, M. Sindoro, Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017)

    Article  CAS  Google Scholar 

  22. C. Si, Z. Sun, F. Liu, Strain engineering of graphene: a review. Nanoscale 8(6), 3207–3217 (2016)

    Article  CAS  Google Scholar 

  23. Y. Shao, F. Zhang, X. Shi, H. Pan, N-functionalized MXenes: ultrahigh carrier mobility and multifunctional oroperties. Phys. Chem. Chem. Phys. 19(42), 28710–28717 (2017)

    Article  CAS  Google Scholar 

  24. D.L. Duong, S.J. Yun, Y.H. Lee, van der Waals layered materials: opportunities and challenges. ACS Nano 11(12), 11803–11830 (2017)

    Article  CAS  Google Scholar 

  25. G. Gao, G. Ding, J. Li, K. Yao, M. Wu, M. Qian, Monolayer MXenes: promising half-metals and spin gapless semiconductors. Nanoscale 8(16), 8986–8994 (2016)

    Article  CAS  Google Scholar 

  26. C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z.Q. Qiu, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals Crystals. Nature 546(7657), 265–269 (2017)

    Article  CAS  Google Scholar 

  27. B. Huang, G. Clark, E. Navarro-Moratalla, D.R. Klein, R. Cheng, K.L. Seyler, D. Zhong, E. Schmidgall, M.A. McGuire, D.H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, X. Xu, Layer-dependent ferromagnetism in a van der Waals Crystal down to the monolayer limit. Nature 546(7657), 270–273 (2017)

    Article  CAS  Google Scholar 

  28. N. Miao, B. Xu, L. Zhu, J. Zhou, Z. Sun, 2D intrinsic ferromagnets from van der Waals Antiferromagnets. J. Am. Chem. Soc. 140(7), 2417–2420 (2018)

    Article  CAS  Google Scholar 

  29. Y. Li, Z. Zhou, S. Zhang, Z. Chen, MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 130(49), 16739–16744 (2008)

    Article  CAS  Google Scholar 

  30. Y. Wang, S.-S. Wang, Y. Lu, J. Jiang, S.A. Yang, Strain-induced isostructural and magnetic phase transitions in monolayer MoN2. Nano Lett. 16(7), 4576–4582 (2016)

    Article  CAS  Google Scholar 

  31. Y.L. Huang, W. Chen, A.T. Wee, Two-dimensional magnetic transition metal chalcogenides. SmartMat 2(2), 139–153 (2021)

    Article  CAS  Google Scholar 

  32. A.V. Kuklin, A.A. Kuzubov, E.A. Kovaleva, N.S. Mikhaleva, F.N. Tomilin, H. Lee, P.V. Avramov, Two-dimensional hexagonal CrN with promising magnetic and optical properties: a theoretical prediction. Nanoscale 9(2), 621–630 (2017)

    Article  CAS  Google Scholar 

  33. L. Hu, X. Wu, J. Yang, Mn2C monolayer: a 2d antiferromagnetic metal with high neel temperature and large spin-orbit coupling. Nanoscale 8(26), 12939–12945 (2016)

    Article  CAS  Google Scholar 

  34. F. Li, W. Wei, P. Zhao, B. Huang, Y. Dai, Electronic and optical properties of pristine and vertical and lateral heterostructures of Janus MoSSe and WSSe. J. Phys. Chem. Lett. 8(23), 5959–5965 (2017)

    Article  CAS  Google Scholar 

  35. X. Tang, S. Li, Y. Ma, A. Du, T. Liao, Y. Gu, L. Kou, Distorted Janus transition metal dichalcogenides: stable two-dimensional materials with sizable band gap and ultrahigh carrier mobility. J. Phys. Chem. C 122(33), 19153–19160 (2018)

    Article  CAS  Google Scholar 

  36. H. Jin, T. Wang, Z.-R. Gong, C. Long, Y. Dai, Prediction of an extremely long exciton lifetime in a Janus-MoSTe monolayer. Nanoscale 10(41), 19310–19315 (2018)

    Article  CAS  Google Scholar 

  37. Z. Guan, S. Ni, S. Hu, Tunable electronic and optical properties of monolayer and multilayer Janus MoSSe as a photocatalyst for solar water splitting: a first-principles study. J. Phys. Chem. C 122(11), 6209–6216 (2018)

    Article  CAS  Google Scholar 

  38. Y. Hou, F. Xue, L. Qiu, Z. Wang, R. Wu, Multifunctional two-dimensional van der Waals Janus magnet Cr-based dichalcogenide halides. Npj Comput. Mater. 8(1), 1–6 (2022)

    Article  CAS  Google Scholar 

  39. J. Wang, S.U. Rehman, Z. Tariq, X. Zhang, J. Zheng, F.K. Butt, C. Li, Pristine and Janus chromium dichalcogenides: potential photocatalysts for overall water splitting in wide solar spectrum under strain and electric field. Sol. Energy Mater. Sol. Cells 230, 111258 (2021)

    Article  CAS  Google Scholar 

  40. Q. Cui, J. Liang, Z. Shao, P. Cui, H. Yang, Strain-tunable ferromagnetism and chiral spin textures in two-dimensional Janus chromium dichalcogenides. Phys. Rev. B 102(9), 094425 (2020)

    Article  CAS  Google Scholar 

  41. D.C. Freitas, R. Weht, A. Sulpice, G. Remenyi, P. Strobel, F. Gay, J. Marcus, M. Núñez-Regueiro, Ferromagnetism in layered metastable 1T-CrTe2. J. Phys.: Condens. Matter 27(17), 176002 (2015)

    Google Scholar 

  42. X. Sun, W. Li, X. Wang, Q. Sui, T. Zhang, Z. Wang, L. Liu, D. Li, S. Feng, S Zhong, Z. Zhang, Room temperature ferromagnetism in ultra-thin van der Waals Crystals of 1T-CrTe2. Nano Res. 13(12), 3358–3363 (2020)

    Article  CAS  Google Scholar 

  43. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)

    Article  Google Scholar 

  44. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)

    Article  Google Scholar 

  45. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condensed Matter. 21(39), 395502 (2009)

    Article  Google Scholar 

  46. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  CAS  Google Scholar 

  47. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006)

    Article  CAS  Google Scholar 

  48. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976)

    Article  Google Scholar 

  49. A. Togo, F. Oba, I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78(13), 134106 (2008)

    Article  Google Scholar 

  50. O. Madelung, U. Rossler, M. Schulz, Non-Tetrahedrally Bonded Elements and Binary Compounds, vol. 41 (Springer, 1998)

    Book  Google Scholar 

  51. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109 (2009)

    Article  Google Scholar 

  52. H. Sevinçli, M. Topsakal, S. Ciraci, Superlattice structures of graphene-based armchair nanoribbons. Phys. Rev. B 78(24), 245402 (2008)

    Article  Google Scholar 

  53. W. Shi, Z. Wang, Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides. J. Phys.: Condens. Matter 30(21), 215301 (2018)

    Google Scholar 

  54. S.-Y. Yang, D.-R. Shi, T. Wang, X.-Y. Yue, L. Zheng, Q.-H. Zhang, L. Gu, X.-Q. Yang, Z. Shadike, L. Hong, Z.-W. Fu, High-rate cathode CrSSe based on Anion reactions for lithium-ion batteries. J. Mater. Chem. A 8(48), 25739–25745 (2020)

    Article  CAS  Google Scholar 

  55. F.A. Rasmussen, K.S. Thygesen, Computational 2d materials database: electronic structure of transition-metal dichalcogenides and oxides. J. Phys. Chem. C 119(23), 13169–13183 (2015)

    Article  CAS  Google Scholar 

  56. A.U. Rahman, H. Ullah, A. Jamil, Z. Iqbal, M. Naveed-Ul-Haq, Robust ferromagnetism and half-metallicity in hydrogenated monolayer-CdS. Phys. B 570, 209–216 (2019)

    Article  CAS  Google Scholar 

  57. M.A. Lukowski, A.S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135(28), 10274–10277 (2013)

    Article  CAS  Google Scholar 

  58. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111–5116 (2011)

    Article  CAS  Google Scholar 

  59. H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund Jr., S.T. Pantelides, K.I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13(8), 3626–3630 (2013)

    Article  CAS  Google Scholar 

  60. R. Fei, W. Li, J. Li, L. Yang, Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 107(17), 173104 (2015)

    Article  Google Scholar 

  61. W. Yu, Z. Zhu, S. Zhang, X. Cai, X. Wang, C.-Y. Niu, W.-B. Zhang, Tunable electronic properties of GESE/phosphorene heterostructure from first-principles study. Appl. Phys. Lett. 109(10), 103104 (2016)

    Article  Google Scholar 

  62. M.E. Fisher, R.J. Burford, Theory of critical-point scattering and correlations. I. The ISING model. Phys. Rev. 156(2), 583 (1967)

    Article  CAS  Google Scholar 

  63. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)

    Article  CAS  Google Scholar 

  64. M. Bernardi, M. Palummo, J.C. Grossman, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13(8), 3664–3670 (2013)

    Article  CAS  Google Scholar 

  65. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Oracle Cloud credits and related resources provided by the Oracle for Research program (Award Number CPQ-2652238). A. U. Rahman acknowledges the Super-Computing facility at Ghulam Ishaq Khan Institute of Engineering Sciences and Technology funded by the Directorate of Science and Technology (DoST), Government of Khyber Pakhtunkhwa. A. U. Rahman also acknowledges the Super-Computing facility at National Center for Physics (NCP) Islamabad, Pakistan.

Author information

Authors and Affiliations

Authors

Contributions

A. U. Rahman Literature review and theoretical calculations, computational methodology and plotting, writing - review, supervision, conceptualization, check & editing, Project administration.

Corresponding author

Correspondence to Altaf Ur Rahman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 47 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A.U. Strain Induces Ferromagnetism in a Janus Transition Metal Dichalcogenides: CrSTe-1H Monolayer. J. Electron. Mater. 52, 1036–1049 (2023). https://doi.org/10.1007/s11664-022-10075-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10075-1

Keywords

Navigation