Skip to main content
Log in

Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Two-dimensional materials with high-temperature ferromagnetism and half-metallicity have the latest applications in spintronic devices. Based on first-principles calculations, we have investigated a novel two-dimensional CrS2 phase with an orthorhombic lattice. Our results suggest that it is stable in dynamics, thermodynamics, and mechanics. The ground state of monolayer orthorhombic CrS2 is both ferromagnetic and half-metallic, with a high Curie temperature of 895 K and a large spin-flipping gap on values of 0.804 eV. This room-temperature ferromagnetism and half-metallicity can maintain stability against a strong biaxial strain ranging from −5% to 5%. Meanwhile, increasing strain can significantly maintain the out-of-plane magnetic anisotropy. A density of states analysis, together with the orbital-resolved magnetic anisotropy energy, has revealed that the strain-enhanced MAE is highly related to the 3d-orbital splitting of Cr atoms. Our results suggest the monolayer orthorhombic CrS2 is an ideal candidate for future spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement All data that support the findings of this study are included within the article (and any supplementary materials).

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)

    Article  ADS  Google Scholar 

  2. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. C. Tang, and C. Y. Zhi, Boron nitride nanotubes and nanosheets, ACS Nano 4(6), 2979 (2010)

    Article  Google Scholar 

  3. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)

    Article  ADS  Google Scholar 

  4. M. S. Xu, T. Liang, M. M. Shi, and H. Z. Chen, Graphene-like two-dimensional materials, Chem. Rev. 113(5), 3766 (2013)

    Article  Google Scholar 

  5. H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, Phosphorene: An unexplored 2D semiconductor with a high hole mobility, ACS Nano 8(4), 4033 (2014)

    Article  Google Scholar 

  6. J. C. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10(3), 276 (2015)

    Article  ADS  Google Scholar 

  7. N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17(22), 1133 (1966)

    Article  ADS  Google Scholar 

  8. H. H. Kim, B. W. Yang, S. W. Li, S. W. Jiang, C. H. Jin, Z. Tao, G. Nichols, F. Sfigakis, S. Z. Zhong, C. H. Li, S. J. Tian, D. G. Cory, G. X. Miao, J. Shan, K. F. Mak, H. C. Lei, K. Sun, L. Y. Zhao, and A. W. Tsen, Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides, Proc. Natl. Acad. Sci. USA 116(23), 11131 (2019)

    Article  ADS  Google Scholar 

  9. B. Huang, G. Clark, D. R. Klein, D. MacNeill, E. Navarro-Moratalla, K. L. Seyler, N. Wilson, M. A. McGuire, D. H. Cobden, D. Xiao, W. Yao, P. Jarillo-Herrero, and X. Xu, Electrical control of 2D magnetism in bilayer CrI3, Nat. Nanotechnol. 13(7), 544 (2018)

    Article  ADS  Google Scholar 

  10. H. B. Wang, F. R. Fan, S. S. Zhu, and H. Wu, Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer, Europhys. Lett. 114(4), 47001 (2016)

    Article  ADS  Google Scholar 

  11. Y. J. Deng, Y. J. Yu, Y. C. Song, J. Z. Zhang, N. Z. Wang, Z. Y. Sun, Y. F. Yi, Y. Z. Wu, S. W. Wu, J. Y. Zhu, J. Wang, X. H. Chen, and Y. B. Zhang, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)

    Article  ADS  Google Scholar 

  12. Z. X. Shen, X. Y. Bo, K. Cao, X. G. Wan, and L. X. He, Magnetic ground state and electron-doping tuning of Curie temperature in Fe3GeTe2: First-principles studies, Phys. Rev. B 103(8), 085102 (2021)

    Article  ADS  Google Scholar 

  13. C. Gong, L. Li, Z. L. Li, H. W. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Z. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)

    Article  ADS  Google Scholar 

  14. A. O’Neill, S. Rahman, Z. Zhang, P. Schoenherr, T. Yildirim, B. Gu, G. Su, Y. R. Lu, and J. Seidel, Enhanced room temperature ferromagnetism in highly strained 2D semiconductor Cr2Ge2Te6, ACS Nano 17(1), 735 (2023)

    Article  Google Scholar 

  15. B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)

    Article  ADS  Google Scholar 

  16. D. J. O’Hara, T. Zhu, A. H. Trout, A. S. Ahmed, Y. K. Luo, C. H. Lee, M. R. Brenner, S. Rajan, J. A. Gupta, D. W. McComb, and R. K. Kawakami, Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit, Nano Lett. 18(5), 3125 (2018)

    Article  ADS  Google Scholar 

  17. R. A. de Groot, F. M. Mueller, P. G. Engen, and K. H. J. Buschow, New class of materials: Half-metallic ferromagnets, Phys. Rev. Lett. 50(25), 2024 (1983)

    Article  ADS  Google Scholar 

  18. S. Q. Zhang, R. Z. Xu, W. H. Duan, and X. L. Zou, Intrinsic half-metallicity in 2D ternary chalcogenides with high critical temperature and controllable magnetization direction, Adv. Funct. Mater. 29(14), 1808380 (2019)

    Article  Google Scholar 

  19. G. J. Zhang, F. Guo, H. Wu, X. K. Wen, L. Yang, W. Jin, W. F. Zhang, and H. X. Chang, Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy, Nat. Commun. 13(1), 5067 (2022)

    Article  ADS  Google Scholar 

  20. F. J. J. Han, X. Yan, F. Li, H. Yu, W. J. Li, X. Zhong, A. Bergara, and G. C. Yang, Prediction of monolayer FeP4 with intrinsic half-metal ferrimagnetism above room temperature, Phys. Rev. B 107(2), 024414 (2023)

    Article  ADS  Google Scholar 

  21. M. R. Habib, S. P. Wang, W. J. Wang, H. Xiao, S. M. Obaidulla, A. Gayen, Y. Khan, H. Z. Chen, and M. S. Xu, Electronic properties of polymorphic two-dimensional layered chromium disulphide, Nanoscale 11(42), 20123 (2019)

    Article  Google Scholar 

  22. X. Sun, W. Li, X. Wang, Q. Sui, T. Zhang, Z. Wang, L. Liu, D. Li, S. Feng, S. Zhong, H. Wang, V. Bouchiat, M. Nunez Regueiro, N. Rougemaille, J. Coraux, A. Purbawati, A. Hadj-Azzem, Z. Wang, B. Dong, X. Wu, T. Yang, G. Yu, B. Wang, Z. Han, X. Han, and Z. Zhang, Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2, Nano Res. 13(12), 3358 (2020)

    Article  ADS  Google Scholar 

  23. L. J. Meng, Z. Zhou, M. Q. Xu, S. Q. Yang, K. P. Si, L. X. Liu, X. G. Wang, H. N. Jiang, B. X. Li, P. X. Qin, P. Zhang, J. L. Wang, Z. Q. Liu, P. Z. Tang, Y. Ye, W. Zhou, L. H. Bao, H. J. Gao, and Y. J. Gong, Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition, Nat. Commun. 12(1), 809 (2021)

    Article  ADS  Google Scholar 

  24. Y. Z. Sun, P. F. Yan, J. Ning, X. Q. Zhang, Y. F. Zhao, Q. W. Gao, M. Kanagaraj, K. P. Zhang, J. J. Li, X. Y. Lu, Y. Yan, Y. Li, Y. B. Xu, and L. He, Ferromagnetism in two-dimensional CrTe2 epitaxial films down to a few atomic layers, AIP Adv. 11(3), 035138 (2021)

    Article  ADS  Google Scholar 

  25. X. Q. Zhang, Q. S. Lu, W. Q. Liu, W. Niu, J. B. Sun, J. Cook, M. Vaninger, P. F. Miceli, D. J. Singh, S. W. Lian, T. R. Chang, X. Q. He, J. Du, L. He, R. Zhang, G. Bian, and Y. B. Xu, Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films, Nat. Commun. 12(1), 2492 (2021)

    Article  ADS  Google Scholar 

  26. X. H. Deng and Z. Y. Li, Intrinsic ultra-wide completely spin-polarized state realized in a new CrO2 monolayer, Phys. Chem. Chem. Phys. 22(30), 17038 (2020)

    Article  Google Scholar 

  27. B. W. Zhang, J. Sun, J. C. Leng, C. Zhang, and J. Wang, Tunable two dimensional ferromagnetic topological half-metal CrO2 by electronic correction and spin direction, Appl. Phys. Lett. 117(22), 222407 (2020)

    Article  ADS  Google Scholar 

  28. X. H. Tian and J. M. Zhang, The electronic, magnetic and optical properties of single-layer CrS2 with vacancy defects, J. Magn. Magn. Mater. 487, 165300 (2019)

    Article  Google Scholar 

  29. K. Y. Chen, J. K. Deng, Y. Yan, Q. Shi, T. Y. Chang, X. D. Ding, J. Sun, S. Yang, and J. Z. Liu, Diverse electronic and magnetic properties of CrS2 enabling strain-controlled 2D lateral heterostructure spintronic devices, npj Comput. Mater. 7(1), 79 (2021)

    Article  ADS  Google Scholar 

  30. M. Z. Liu, Y. L. Huang, J. Gou, Q. J. Liang, R. Chua, S. S. Arramel, S. Duan, L. Zhang, L. L. Cai, X. Yu, D. Zhong, W. Zhang, and A. T. S. Wee, Duan, L. Zhang, L. L. Cai, X. J. Yu, D. Y. Zhong, W. J. Zhang, and A. T. S. Wee, Diverse structures and magnetic properties in nonlayered monolayer chromium selenide, J. Phys. Chem. Lett. 12(32), 7752 (2021)

    Article  Google Scholar 

  31. M. Alsubaie, C. Tang, D. Wijethunge, D. C. Qi, and A. J. Du, First-principles study of the enhanced magnetic anisotropy and transition temperature in a CrSe2 monolayer via hydrogenation, ACS Appl. Electron. Mater. 4(7), 3240 (2022)

    Article  Google Scholar 

  32. Y. H. Liu, S. Kwon, G. J. de Coster, R. K. Lake, and M. R. Neupane, Structural, electronic, and magnetic properties of CrTe2, Phys. Rev. Mater. 6(8), 084004 (2022)

    Article  Google Scholar 

  33. L. L. Wu, L. W. Zhou, X. Y. Zhou, C. Wang, and W. Ji, In-plane epitaxy-strain-tuning intralayer and interlayer magnetic coupling in CrSe2 and CrTe2 monolayers and bilayers, Phys. Rev. B 106(8), L081401 (2022)

    Article  ADS  Google Scholar 

  34. B. Li, Z. Wan, C. Wang, P. Chen, B. Huang, X. Cheng, Q. Qian, J. Li, Z. W. Zhang, G. Z. Sun, B. Zhao, H. F. Ma, R. X. Wu, Z. M. Wei, Y. Liu, L. Liao, Y. Ye, Y. Huang, X. D. Xu, X. D. Duan, W. Ji, and X. F. Duan, Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order, Nat. Mater. 20(6), 818 (2021)

    Article  ADS  Google Scholar 

  35. A. L. Coughlin, D. Y. Xie, X. Zhan, Y. Yao, L. Z. Deng, H. Hewa-Walpitage, T. Bontke, C. W. Chu, Y. Li, J. Wang, H. A. Fertig, and S. X. Zhang, Van der Waals superstructure and twisting in self-intercalated magnet with near room-temperature perpendicular ferromagnetism, Nano Lett. 21(22), 9517 (2021)

    Article  ADS  Google Scholar 

  36. I. H. Lee, B. K. Choi, H. J. Kim, M. J. Kim, H. Y. Jeong, J. H. Lee, S. Y. Park, Y. Jo, C. Lee, J. W. Choi, S. W. Cho, S. Lee, Y. Kim, B. H. Kim, K. J. Lee, J. E. Heo, S. H. Chang, F. Li, B. L. Chittari, J. Jung, and Y. J. Chang, Modulating curie temperature and magnetic anisotropy in nanoscale-layered Cr2Te3 films: Implications for room-temperature spintronics, ACS Appl. Nano Mater. 4(5), 4810 (2021)

    Article  Google Scholar 

  37. K. Lasek, P. M. Coelho, P. Gargiani, M. Valvidares, K. Mohseni, H. L. Meyerheim, I. Kostanovskiy, K. Zberecki, and M. Batzill, Van der Waals epitaxy growth of 2D ferromagnetic Cr1+δTe2 nanolayers with concentration-tunable magnetic anisotropy, Appl. Phys. Rev. 9(1), 011409 (2022)

    Article  ADS  Google Scholar 

  38. G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)

    Article  Google Scholar 

  39. G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  40. P. E. Blöchl, Projected augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)

    Article  ADS  Google Scholar 

  41. H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  42. G. Xiao, W. Z. Xiao, Q. Chen, and L. L. Wang, Novel two-dimensional ferromagnetic materials CrX2 (X = O, S, Se) with high Curie temperature, J. Mater. Chem. C 10(46), 17665 (2022)

    Article  Google Scholar 

  43. A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015)

    Article  ADS  Google Scholar 

  44. G. J. Martyna, M. L. Klein, and M. Tuckerman, Nosé-Hoover chains: The canonical ensemble via continuous dynamics, J. Chem. Phys. 97(4), 2635 (1992)

    Article  ADS  Google Scholar 

  45. F. Mouhat and F. X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90(22), 224104 (2014)

    Article  ADS  Google Scholar 

  46. L. Xiong, L. Yi, and G. Y. Gao, Search for half-metallic magnets with large half-metallic gaps in the quaternary Heusler alloys CoFeTiZ and CoFeVZ (Z = Al, Ga, Si, Ge, As, Sb), J. Magn. Magn. Mater. 360, 98 (2014)

    Article  ADS  Google Scholar 

  47. X. T. Wang, Z. X. Cheng, J. L. Wang, L. Y. Wang, Z. Y. Yu, C. S. Fang, J. T. Yang, and G. D. Liu, Origin of the half-metallic band-gap in newly designed quaternary Heusler compounds ZrVTiZ (Z = Al, Ga), RSC Advances 6(62), 57041 (2016)

    Article  ADS  Google Scholar 

  48. D. Soriano, M. I. Katsnelson, and J. Fernandez-Rossier, Magnetic two-dimensional chromium trihalides: A theoretical perspective, Nano Lett. 20(9), 6225 (2020)

    Article  ADS  Google Scholar 

  49. M. Subramanian, A. Ramirez, and W. Marshall, Structural tuning of ferromagnetism in a 3D cuprate perovskite, Phys. Rev. Lett. 82(7), 1558 (1999)

    Article  ADS  Google Scholar 

  50. W. X. Li, C. S. Guo, Q. Zang, R. Ding, and Y. Zhao, Magnetic phase transition in strained two-dimensional semiconductor MoTeI monolayer, Appl. Surf. Sci. 536, 147842 (2021)

    Article  Google Scholar 

  51. Y. Zhu, Y. F. Pan, L. Ge, J. Y. Fan, D. N. Shi, C. L. Ma, J. Hu, and R. Q. Wu, Separating RKKY interaction from other exchange mechanisms in two-dimensional magnetic materials, Phys. Rev. B 108(4), L041401 (2023)

    Article  ADS  Google Scholar 

  52. L. X. Kang, C. Ye, X. X. Zhao, X. Y. Zhou, J. X. Hu, Q. Li, D. Liu, C. M. Das, J. F. Yang, D. Y. Hu, J. Q. Chen, X. Cao, Y. Zhang, M. Z. Xu, J. Di, D. Tian, P. Song, G. Kutty, Q. S. Zeng, Q. D. Fu, Y. Deng, J. D. Zhou, A. Ariando, F. Miao, G. Hong, Y. Z. Huang, S. J. Pennycook, K. T. Yong, W. Ji, X. R. Wang, and Z. Liu, Phase-controllable growth of ultrathin 2D magnetic FeTe crystals, Nat. Commun. 11(1), 3729 (2020)

    Article  ADS  Google Scholar 

  53. M. Lan, G. Xiang, Y. Nie, D. Y. Yang, and X. Zhang, The static and dynamic magnetic properties of monolayer iron dioxide and iron dichalcogenides, RSC Adv. 6(38), 31758 (2016)

    Article  ADS  Google Scholar 

  54. G. P. Müller, M. Hoffmann, C. Disselkamp, D. Schurhoff, S. Mavros, M. Sallermann, N. S. Kiselev, H. Jonsson, and S. Blugel, Spirit: Multifunctional framework for atomistic spin simulations, Phys. Rev. B 99(22), 224414 (2019)

    Article  ADS  Google Scholar 

  55. X. T. Fang, B. Z. Zhou, X. C. Wang, and W. B. Mi, High Curie temperature and large perpendicular magnetic anisotropy in two-dimensional half metallic OsI3 monolayer with quantum anomalous Hall effect, Mater. Today Phys. 28, 100847 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Project of the Natural Science Program of Xinjiang Uygur Autonomous Region (Grant No. 2013D01D03), the National Natural Science Foundation of China (Grant Nos. 52073308 and 12004439), the Central South University Research Fund for Sheng Hua Scholars (Grant No. 502033019), Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX20190107), the State Key Laboratory of Powder Metallurgy at Central South University, the Fundamental Research Funds for the Central Universities of Central South University, the Tianchi-Talent Project for Young Doctors of Xinjiang Uygur Autonomous Region (No. 51052300570), the National Science Foundation of Hunan Province (No. 2021JJ30864), the Key Project of the Natural Science Program of Xinjiang Uygur Autonomous Region (Grant No. 2023D01D03), and the Outstanding Doctoral Student Innovation Project of Xinjiang University (No. XJU2023BS028). This work was carried out in part using computing resources at the High Performance Computing Center of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aolin Li  (李奥林) or Fangping Ouyang  (欧阳方平).

Ethics declarations

Declarations The authors declare that they have no competing interests and there are no conflicts.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, B., Li, A., Zhou, W. et al. Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2. Front. Phys. 19, 43200 (2024). https://doi.org/10.1007/s11467-023-1387-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1387-y

Keywords

Navigation