Skip to main content
Log in

Heterostructure Fe2O3–In2O3 Nanoparticles as Hydrogen Gas Sensor

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Fe2O3–In2O3 (9:1 mol.%) heterostructure nanoparticles were prepared by the thermal decomposition of stoichiometric amounts of Fe2C2O4 2H2O and In(OH)3 at 400°C for 20 h. The sample was characterized by x-ray diffraction (XRD), Fourier-transform infrared spectrometry, thermogravimetry–differential thermal analyzer, scanning electron microscopy/transmission electron microscopy, and a superconducting quantum interference device magnetometer. The XRD pattern could be indexed to both the rhombohedral α–Fe2O3 and cubic bixbyite In2O3 phases. This heterostructure system showed ferromagnetic properties (due to the presence of γ–Fe2O3 phase) from 5 to 300 K and a spin-glass-like behavior of magnetization versus temperature under zero-field-cooled and field-cooled conditions. H2 gas-sensing property was observed from 100 ppm to 2 ppm at 200 °C and 250 °C. Response and recovery times were about 275 s and 500 s, respectively, and the sensitivity varied from 2% to 21% as the H2 increased from 2 to 100 ppm. The Ra/Rg varied from 1 to 1.3 and the plot of Ra/Rg versus H2 could be fitted to the sigmoidal logistic function, y = A2 + (A1 − A2) / (1 + (x/x0)p.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Dincer, and C. Acar, Int. J. Hydrogen Energy 43, 8579 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.120.

    Article  CAS  Google Scholar 

  2. T. Kamal, J. Alloys Compd. 729, 1058 (2017). https://doi.org/10.1016/j.jallcom.2017.09.124.

    Article  CAS  Google Scholar 

  3. J.H. Kim, and A. Mirzaei, H Woo Kim, P Wu, and SS KimSens. Actuators B Chem. 293, 210 (2019). https://doi.org/10.1016/j.snb.2019.04.113.

    Article  CAS  Google Scholar 

  4. A. Mirzaei, J.H. Kim, H.W. Kim, and S.S. Kim, Appl. Sci. 9, 1775 (2019). https://doi.org/10.3390/app9091775.

    Article  CAS  Google Scholar 

  5. A. Katoch, J.H. Kim, Y.J. Kwon, H.W. Kim, S.S. Kim, and A.C.S. Appl, Mater. Interfaces 7, 11351 (2015). https://doi.org/10.1021/acsami.5b01817.

    Article  CAS  Google Scholar 

  6. N. Van Toan, N. Viet Chien, N. Van Duy, H. Si Hong, H. Nguyen, H. Duc Hoa, and N. Van Hieu, J. Hazard. Mater. 301, 433 (2016). https://doi.org/10.1016/j.jhazmat.2015.09.013.

    Article  CAS  Google Scholar 

  7. T. Hübert, L. Boon-Brett, V. Palmisano, and M.A. Bader, Int. J. Hydrogen Energy 39, 20474 (2014). https://doi.org/10.1016/j.ijhydene.2014.05.042.

    Article  CAS  Google Scholar 

  8. X. Li, J. Feng, W. Mao, F. Yin, and J. Jiang, J. Mater. Chem. C 8, 14386 (2020). https://doi.org/10.1039/d0tc03622f.

    Article  CAS  Google Scholar 

  9. T. Hübert, L. Boon-Brett, G. Black, and U. Banach, Sensors Actuators B Chem. 157, 329 (2011). https://doi.org/10.1016/j.snb.2011.04.070.

    Article  CAS  Google Scholar 

  10. E. Brauns, E. Morsbach, S. Kunz, M. Bäumer, and W. Lang, Sens. Actuators B Chem. 193, 895 (2014). https://doi.org/10.1016/j.snb.2013.11.048.

    Article  CAS  Google Scholar 

  11. R. Tabassum, and B.D. Gupta, Appl. Opt. 54, 1032 (2015). https://doi.org/10.1364/AO.54.001032.

    Article  CAS  Google Scholar 

  12. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, Sens. Actuators B Chem. 160, 580 (2011). https://doi.org/10.1016/j.snb.2011.08.032.

    Article  CAS  Google Scholar 

  13. A. Gurlo, Nanoscale 3, 154 (2011). https://doi.org/10.1039/c0nr00560f.

    Article  CAS  Google Scholar 

  14. B. Cao, J. Chen, X. Tang, and W. Zhou, J. Mater. Chem. 19, 2323 (2009). https://doi.org/10.1039/b816646c.

    Article  CAS  Google Scholar 

  15. H.J. Song, X.H. Jia, H. Qi, X.F. Yang, H. Tang, and C.Y. Min, J. Mater. Chem. 22, 3508 (2012). https://doi.org/10.1039/C2JM13574D.

    Article  CAS  Google Scholar 

  16. J. Li, H. Fan, and X. Jia, J. Phys. Chem. C 114, 14684 (2010). https://doi.org/10.1021/jp100792c.

    Article  CAS  Google Scholar 

  17. T. Waitz, T. Wagner, T. Sauerwald, C.D. Kohl, and M. Tiemann, Adv. Funct. Mater. 19, 653 (2009). https://doi.org/10.1002/adfm.200801458.

    Article  CAS  Google Scholar 

  18. S. Vallejos, T. Stoycheva, P. Umek, C. Navio, R. Snyders, C. Bittencourt, E. Llobet, C. Blackman, S. Moniz, and X. Correig, Chem. Commun. 47, 565 (2011). https://doi.org/10.1039/c0cc02398a.

    Article  CAS  Google Scholar 

  19. Y. Wang, X. Jiang, and Y. Xia, J. Am. Chem. Soc. 125, 16176 (2003). https://doi.org/10.1021/ja037743f.

    Article  CAS  Google Scholar 

  20. D. Chu, Y.-P. Zeng, D. Jiang, and Y. Masuda, Sensors Actuators B Chem. 137, 630 (2009). https://doi.org/10.1016/j.snb.2008.12.063.

    Article  CAS  Google Scholar 

  21. P. Sun, Y. Cai, S. Du, X. Xu, L. You, J. Ma, F. Liu, X. Liang, Y. Sun, and G. Lu, Sens. Actuators B Chem. 182, 336 (2013). https://doi.org/10.1016/j.snb.2013.03.019.

    Article  CAS  Google Scholar 

  22. H.-L. Yu, L. Li, X.M. Gao, Y. Zhang, F. Meng, T.-S. Wang, G. Xiao, Y.J. Chen, and C.L. Zhu, Sens. Actuators B Chem. 171–172, 679 (2012). https://doi.org/10.1016/j.snb.2012.05.054.

    Article  CAS  Google Scholar 

  23. S. Aygün, and D. Cann, J. Phys. Chem. B 109, 7878 (2005). https://doi.org/10.1021/jp044481a.

    Article  CAS  Google Scholar 

  24. M. Ivanovskaya, D. Kotsikau, G. Faglia, P. Nelli, and S. Irkaev, Sens. Actuators B Chem. 93, 422 (2003). https://doi.org/10.1016/S0925-4005(03)00175-8.

    Article  CAS  Google Scholar 

  25. M. Ivanovskaya, D. Kotsikau, G. Faglia, and P. Nelli, Sens. Actuators B Chem. 96, 498 (2003). https://doi.org/10.1016/S0925-4005(03)00624-5.

    Article  CAS  Google Scholar 

  26. T. Zhou, L. Wei, Y. Xie, Q. Li, G. Hu, Y. Chen, S. Yan, G. Liu, L. Mei, and J. Jiao, Nanoscale Res. Lett. 7, 661 (2012). https://doi.org/10.1186/1556-276X-7-661.

    Article  CAS  Google Scholar 

  27. G. Han, Q. Lu, G. Liu, X. Ye, S. Lin, Y. Song, B. Liu, X. Yang, and G. Li, J. Mater. Sci. Mater. Electron. 23, 1616 (2012). https://doi.org/10.1007/s10854-012-0638-4.

    Article  CAS  Google Scholar 

  28. P. Li, Y. Cai, and H. Fan, RSC Adv. 3, 22239 (2013). https://doi.org/10.1039/C3RA43616K.

    Article  CAS  Google Scholar 

  29. R.K. Gupta, K. Ghosh, and P.K. Kahol, Mater. Lett. 64, 2022 (2010). https://doi.org/10.1016/j.matlet.2010.06.026.

    Article  CAS  Google Scholar 

  30. D. Bérardan, and E. Guilmeau, J. Phys. Condens. Matter 19, 236224 (2007). https://doi.org/10.1088/0953-8984/19/23/236224.

    Article  CAS  Google Scholar 

  31. A. Singhal, S.N. Achary, J. Manjanna, O.D. Jayakumar, R.M. Kadam, and A.K. Tyagi, J. Phys. Chem. C 113, 3600 (2009). https://doi.org/10.1021/jp8097846.

    Article  CAS  Google Scholar 

  32. S. Kohiki, Y. Murakawa, K. Hori, H. Shimooka, T. Tajiri, H. Deguchi, M. Oku, M. Arai, M. Mitome, and Y. Bando, Jpn. J. Appl. Phys. 44, L979 (2005). https://doi.org/10.1143/JJAP.44.L979.

    Article  CAS  Google Scholar 

  33. T.-R. Rashid, D.-T. Phan, and G.-S. Chung, Sens. Actuators B Chem. 185, 777 (2013). https://doi.org/10.1016/j.snb.2013.01.015.

    Article  CAS  Google Scholar 

  34. C. Fahed, S.B. Qadri, H. Kim, A. Piqué, M. Miller, N.A. Mahadik, M.V. Rao, and M. Osofsky, Phys. Status Solidi 7, 2298 (2010). https://doi.org/10.1002/pssc.200983703.

    Article  CAS  Google Scholar 

  35. M. Ristić, S. Popović, M. Tonković, and S. Musić, J. Mater. Sci. 26, 4225 (1991). https://doi.org/10.1007/BF02402973.

    Article  Google Scholar 

  36. M. Sorescu, T. Xu, L. Diamandescu, and D. Hileman, Hyperfine Interact. 199, 365 (2011). https://doi.org/10.1007/s10751-011-0267-y.

    Article  CAS  Google Scholar 

  37. M.I. Ivanovskaya, D.A. Kotsikau, A. Taurino, and P. Siciliano, Sens. Actuators B Chem. 124, 133 (2007).

    Article  CAS  Google Scholar 

  38. Z. Jing, Mater. Sci. Eng. A 441, 176 (2006). https://doi.org/10.1016/j.msea.2006.08.013.

    Article  CAS  Google Scholar 

  39. J.-M. Tulliani, and P. Bonville, Ceram. Int. 31, 507 (2005). https://doi.org/10.1016/j.ceramint.2004.06.015.

    Article  CAS  Google Scholar 

  40. G. Neri, A. Bonavita, N. Galvagno, N. Donato, and A. Caddemi, Sensors Actuators B Chem. 111–112, 71 (2005). https://doi.org/10.1016/j.snb.2005.06.061.

    Article  CAS  Google Scholar 

  41. I. Nodari, A. Alebouyeh, J.F. Brice, R. Gérardin, and O. Evrard, Mater. Res. Bull. 23, 1039 (1988). https://doi.org/10.1016/0025-5408(88)90060-8.

    Article  CAS  Google Scholar 

  42. F. Brown, M.J. Flores, N. Kimizuka, Y. Michiue, M. Onoda, T. Mohri, M. Nakamura, and N. Ishizawa, J. Solid State Chem. 144, 91 (1999). https://doi.org/10.1006/jssc.1998.8123.

    Article  CAS  Google Scholar 

  43. M. Pernet, J.C. Joubert, and C. Berthet-Colominas, Solid State Commun. 17, 1505 (1975). https://doi.org/10.1016/0038-1098(75)90983-7.

    Article  CAS  Google Scholar 

  44. A. Gurlo, M. Ivanovskaya, N. Barsan, and U. Weimar, Inorg. Chem. Commun. 6, 569 (2003). https://doi.org/10.1016/S1387-7003(03)00047-9.

    Article  CAS  Google Scholar 

  45. J. Feng, X. Li, G. Zhu, Q.J. Wang A.C.S. Appl. Mater. Interfaces 12, 43098 (2020). https://doi.org/10.1021/acsami.0c12907.

    Article  CAS  Google Scholar 

  46. E.E. Gutman, Sens. Actuators B: Chem. 23, 209 (1995). https://doi.org/10.1016/0925-4005(94)01276-N.

    Article  CAS  Google Scholar 

  47. U. Schwertmann, and R. M. Cornell, Iron Oxides in the Laboratory ‐ Preparation and Characterization, ISBN 978-3-527-26991-6, 2nd Ed., Wiley-VCH, 2008.

  48. J.L. Jambor, and J.E. Dutrizac, Chem. Rev. 98, 2549 (1998). https://doi.org/10.1021/cr970105t.

    Article  CAS  Google Scholar 

  49. L. E. Smart, E. A. Moore, Solid State Chemistry: An Introduction, ISBN 0-203-49635-3, 3rd Ed., CRC, 2005.

  50. R.K. Chava, S.Y. Oh, and Y.T. Yu, CrystEngComm 18, 3655 (2016). https://doi.org/10.1039/C6CE00352D.

    Article  CAS  Google Scholar 

  51. J. Hu, Y. Sun, Y. Xue, M. Zhang, P. Li, K. Lian, S. Zhuiykov, W. Zhang, and Y. Chen, Sens. Actuators B Chem. 257, 124 (2018). https://doi.org/10.1016/j.snb.2017.10.139.

    Article  CAS  Google Scholar 

  52. X. Li, X. Li, N. Chen, X. Li, J. Zhang, J. Yu, J. Wang, and Z. Tang, J. Nanomater. 2014, 973156 (2014). https://doi.org/10.1155/2014/973156.

    Article  CAS  Google Scholar 

  53. Z.Q. Zheng, L.F. Zhu, and B. Wang, Nanoscale Res. Lett. 10, 293 (2015). https://doi.org/10.1186/s11671-015-1002-4.

    Article  CAS  Google Scholar 

  54. K. Hara, and N. Nishida, Sens. Actuators B Chem. 20, 181 (1994). https://doi.org/10.1016/0925-4005(94)01181-8.

    Article  CAS  Google Scholar 

  55. J.-H. Lee, J.-H. Kim, J.-Y. Kim, A. Mirzaei, H.W. Kim, and S.S. Kim, Sensors 19, 4276 (2019). https://doi.org/10.3390/s19194276.

    Article  CAS  Google Scholar 

  56. Z. Li, S. Yan, Z. Wu, H. Li, J. Wang, W. Shen, Z. Wang, and Y. Fu, Int. J. Hydrogen Energy 43, 22746 (2018). https://doi.org/10.1016/j.ijhydene.2018.10.101.

    Article  CAS  Google Scholar 

  57. C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, N. Yamazoe, A.C.S. Appl, Mater. Interfaces 6, 12031 (2014). https://doi.org/10.1021/am501063z.

    Article  CAS  Google Scholar 

  58. H.D. Chen, K.L. Jin, P.F. Wang, J.C. Xu, Y.B. Han, H.X. Jin, D.F. Jin, X.L. Peng, B. Hong, J. Li, Y.T. Yang, J. Gong, H.L. Ge, and X.Q. Wang, J. Phys. Chem. Solids 120, 271 (2018). https://doi.org/10.1016/j.jpcs.2018.05.004.

    Article  CAS  Google Scholar 

  59. M.S. Kiruba, A.S. Jose, K. Prajwal, P. Chowdhury, and H.C. Barshilia, Sensors Actuators B Chem. 310, 127830 (2020). https://doi.org/10.1016/j.snb.2020.127830.

    Article  CAS  Google Scholar 

  60. F. Zhang, X. Li, Q. Zhao, Q. Zhang, M. Tadé, and S. Liu, J. Colloid Interface Sci. 457, 18 (2015). https://doi.org/10.1016/j.jcis.2015.06.008.

    Article  CAS  Google Scholar 

  61. J. Cai, S. Li, H. Pan, Y. Liu, and G. Qin, J. Mater. Sci. 51, 8148 (2016). https://doi.org/10.1007/s10853-016-0085-3.

    Article  CAS  Google Scholar 

  62. D. Kotsikau, and M. Ivanovskaya, Mater. Chem. Phys. 160, 337 (2015). https://doi.org/10.1016/j.matchemphys.2015.04.047.

    Article  CAS  Google Scholar 

  63. M. Sorescu, L. Diamandescu, and D. Tarabasanu-Mihaila, J. Phys. Chem. Solids 65, 1719 (2004). https://doi.org/10.1016/j.jpcs.2004.05.002.

    Article  CAS  Google Scholar 

  64. M. Hermanek, R. Zboril, M. Mashlan, L. Machala, and O. Schneeweiss, J. Mater. Chem. 16, 1273 (2006). https://doi.org/10.1039/b514565a.

    Article  CAS  Google Scholar 

  65. K.S. Rane, A.K. Nikumbh, and A.J. Mukhedkar, J. Mater. Sci. 16, 2387 (1981). https://doi.org/10.1007/BF01113573.

    Article  CAS  Google Scholar 

  66. M. Aliahmad, and N. Nasiri Moghaddam, MaterSci. 31, 264 (2013). https://doi.org/10.2478/s13536-012-0100-6.

    Article  CAS  Google Scholar 

  67. Z. Li, H.-F. Fei, Y. Tan, X. Zhang, Z. Xie, and Z. Zhang, RSC Adv. 5, 38093 (2015). https://doi.org/10.1039/C5RA05968B.

    Article  CAS  Google Scholar 

  68. J. Manjanna, and G. Venkateswaran, Ind. Eng. Chem. Res. 41, 3053 (2002). https://doi.org/10.1021/ie010344d.

    Article  CAS  Google Scholar 

  69. G. Hosamani, B.N. Jagadale, J. Manjanna, S.M. Shivaprasad, D.K. Shukla, and J.S. Bhat, J. Electron. Mater. 50, 52 (2021). https://doi.org/10.1007/s11664-020-08553-5.

    Article  CAS  Google Scholar 

  70. D. Cao, H. Li, L. Pan, J. Li, X. Wang, P. Jing, X. Cheng, W. Wang, J. Wang, and Q. Liu, Sci. Rep. 6, 32360 (2016). https://doi.org/10.1038/srep32360.

    Article  CAS  Google Scholar 

  71. A. Mirzaei, B. Hashemi, and K. Janghorban, J. Mater. Sci. Mater. Electron. 27, 3109 (2016). https://doi.org/10.1007/s10854-015-4200-z.

    Article  CAS  Google Scholar 

  72. D.M. Chethana, T.C. Thanuja, H.M. Mahesh, M.S. Kiruba, A.S. Jose, H.C. Barshilia, and J. Manjanna, Ceram. Int. 47, 10381 (2020). https://doi.org/10.1016/j.ceramint.2020.06.129.

    Article  CAS  Google Scholar 

  73. W. Wang, Y. Zhang, J. Zhang, G. Li, D. Leng, Y. Gao, J. Gao, H. Lu, and X. Li, Sens. Actuators B Chem. 328, 129045 (2021). https://doi.org/10.1016/j.snb.2020.129045.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Prof. Satoru Kobayashi, Faculty of Engineering, Iwate University, Japan, and Mr. Dinesh S. Patil, Dept. of Chemistry, RCU, India, for their help during this work. Prof. J Manjanna gratefully acknowledge the financial support from DST-FIST, Govt. of India [SR/FST/CSI-273/2016].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Manjanna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chethana, D.M., Thanuja, T.C., Mahesh, H.M. et al. Heterostructure Fe2O3–In2O3 Nanoparticles as Hydrogen Gas Sensor. Journal of Elec Materi 50, 4313–4323 (2021). https://doi.org/10.1007/s11664-021-08951-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08951-3

Keywords

Navigation