Skip to main content
Log in

Electrochemical and sensing properties of α-Fe2O3 nanoparticles synthesized using hydrothermal method at low reaction temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, iron oxide nanoparticles (α-Fe2O3 NPs) were synthesized by hydrothermal method using iron (III) acetylacetonate as a precursor. The annealing process played a significant role in the change of crystallite size and morphology of nanoparticles. The X-ray diffraction analysis confirmed the rhombohedral α-Fe2O3 crystal structure with preferential orientation along (104) plane. Scanning electron microscopy and transmission electron microscopy images exhibited the cubic structure and the SAED pattern showed the polycrystalline nature of the nanoparticles. The Raman and FTIR spectra further confirmed the formation of Fe and O vibration modes. The optical reflection edges shifted toward higher wavelength with the increase in reaction temperatures and bandgap decreased from 2.88 to 2.74 eV. The Brunauer–Emmett–Teller results showed that the large surface area 218.6 m2/g for FeC6 sample. The hysteresis loop was studied by vibrating sample magnetometer and it exhibited a ferromagnetic behavior. The cyclic voltammetry measurements exhibited a high specific capacitance value 1074 Fg−1 at a scan rate of 10 V. At room temperature, the ammonia-sensing properties of α-Fe2O3 NPs were examined. When compared with other gases, α-Fe2O3 NPs were found to have high selectivity toward ammonia. The sensor based on cubic-like NPs had a good response and recovery times with better selectivity to NH3. The results of the experiments clearly revealed that α-Fe2O3 NPs were used as a good sensing material in the production of NH3 sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. J.W. Erisman, M.A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008)

    Article  CAS  Google Scholar 

  2. C. Malins, A. Doyle, B.D. MacCraith, F. Kvasnik, M. Landl, P. Simon, Personal ammonia sensor for industrial environments. J. Environ. Monit. 1, 417–422 (1999)

    Article  CAS  Google Scholar 

  3. Y. Alarie, Dose–response analysis in animal studies: prediction of human responses. Environ. Health Perspect. 42, 9–13 (1981)

    Article  CAS  Google Scholar 

  4. G.K. Mani, J.B.B. Rayappan, Selective detection of ammonia using spray pyrolysis deposited pureand nickel doped ZnO thin films. Appl. Surf. Sci. 311, 405–412 (2014)

    Article  CAS  Google Scholar 

  5. P. Nelli, G. Faglia, G. Sberveglieri, E. Cereda, G. Gabetta, A. Dieguez, The aging effect on SnO2–Au thin film sensors: electrical and structural characterization. Thin Solid Films 371, 249–253 (2000)

    Article  CAS  Google Scholar 

  6. A.C. Romain, J. Nicolas, Long term stability of metal oxide-based gas sensors fore-nose environmental applications: an overview. Sens. Actuators B: Chem. 146, 502–506 (2010)

    Article  CAS  Google Scholar 

  7. G. Korotcenkov, B.K. Cho, Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey). Sens. Actuators B: Chem. 156, 527–538 (2011)

    Article  CAS  Google Scholar 

  8. J.R. Reddy, G.K. Mani, P. Shankar, J.B.B. Rayappan, Spray pyrolysis deposited ZnO Nanopebbles as room temperature ammonia sensor. Sens. Lett. 12, 1–6 (2014)

    Article  Google Scholar 

  9. X. Wang, M. Zhang, J. Liu, T. Luo, Y. Qian, Shape phase controlled synthesis of In2O3 with various morphologies and their gas-sensing properties. Sens. Actuators B: Chem. 137(1), 103–110 (2009)

    Article  Google Scholar 

  10. W. Wang, Y. Zhen, J. Zhang, Y. Li, H. Zhong, Z. Jia, Y. Xiong, Q.Z. Xue, Y. Yan, N.S. Alharbi, T. Hayat, SnO2 nanoparticles-modified 3D-multilayer MoS2 nanosheets for ammonia gas sensing at room temperature. Sens. Actuators B: Chem. 321, 128471 (2021)

    Article  Google Scholar 

  11. H. Liu, W. Shen, X. Chen, J.-P. Corriou, A high-performance NH3 gas sensor based on TiO2 quantum dot clusters with ppb level detection limit at room temperature. J. Mater. Sci. Mater. Electron. 29, 18380–18387 (2018)

    Article  CAS  Google Scholar 

  12. P. Li, B. Wang, C. Qin, C. Han, L. Sun, Y. Wang, Band-gap-tunable CeO2 nanoparticles for room-temperature NH3 gas sensors. Ceram. Int. 46(11), 19232–19240 (2020)

    Article  CAS  Google Scholar 

  13. I. Rawal, Facial synthesis of hexagonal metal oxide nanoparticles for low temperature ammonia gas sensing applications. RSC Adv. 5, 4135–4142 (2015)

    Article  CAS  Google Scholar 

  14. S. Sharma, P. Chauhan, S. Husain, Structural and optical properties of Mn2O3 nanoparticles & its gas sensing applications. Adv. Mater. Proc. 1(2), 220–225 (2016)

    Article  Google Scholar 

  15. S.T. Navale, D.K. Bandgar, S.R. Nalage, G.D. Khuspe, M.A. Chougule, Y.D. Kolekar, S. Sen, V.B. Pati, Synthesis of Fe2O3 nanoparticles for nitrogen dioxide gas sensing applications. Ceram. Int. 39, 6453–6460 (2013)

    Article  CAS  Google Scholar 

  16. J. Zhang, Z. Qin, D. Zeng, C. Xie, Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration. Phys. Chem. Chem. Phys. 19, 6313–6329 (2017)

    Article  CAS  Google Scholar 

  17. T. Ge, Li. Shen, J. Li, Y. Zhang, Ya. Zhang, Morphology-controlled hydrothermal synthesis and photocatalytic Cr(VI) reduction properties of α-Fe2O3. Colloids Surf. A: Physicochem. Eng. Aspects 635, 128069 (2022)

    Article  CAS  Google Scholar 

  18. K. Raja, M. Mary Jaculine, M. Jose, A.A.M. Sunil Verma, P.K. Ilangovan, K. Sethusankar, S. Jerome Das, Sol–gel synthesis and characterization of α-Fe2O3 nanoparticles. Superlattices Microstruct. 86, 306–312 (2015)

    Article  CAS  Google Scholar 

  19. M.F.R. Fouda, M.B. El-Kholy, S.A. Moustafa, A.I. Hussien, M.A. Wahba, M.F. El-Shahat, Synthesis and characterization of nanosized Fe2O3 pigments. Int. J. Inorg. Chem. 9, 1–10 (2012)

    Google Scholar 

  20. S. Krehula, M. Ristić, Ž Petrović, L. KratofilKrehula, I. Mitar, S. Musić, Effects of Cu doping on the microstructural, thermal, optical and photocatalytic properties of α-FeOOH and α-Fe2O3 1D nanoparticles. J. Alloys Compd. 802, 290–300 (2019)

    Article  Google Scholar 

  21. B.-S. Wu, P. Wang, S.-H. Teng, Controllable synthesis and coating-thickness dependent electrochemical properties of mesoporous carbon-coated α-Fe2O3 nanoparticles for lithium-ion batteries. Colloids Surf. A: Physicochem. Eng. Aspects 610, 125907 (2021)

    Article  CAS  Google Scholar 

  22. N. ThanhVinh, T. Van Dang, B.T. Hang, A.-T. Le, N.T. Tuan, L. KhanhVinh, N. Van Quy, Effect of ferric ion [Fe3+] and [Fe2+] on SO2 adsorption ability of γ-Fe2O3 nanoparticles for mass-type gas sensors. Sens. Actuators A: Phys. 331, 112981 (2021)

    Article  CAS  Google Scholar 

  23. S. Zolghadra, K. Khojiera, S. Kimiagar, Ammonia sensing properties of α-Fe2O3 thin films during post annealing process. Proc. Mater. Sci. 11, 469–473 (2015)

    Article  Google Scholar 

  24. A. Mirzaei, K. Janghorban, B. Hashemi, M. Bonyani, S.G. Leonardi, G. Neri, A novel gas sensor based on Ag/Fe2O3 core-shell nanocomposites. Ceram. Int. 42(16), 18974–18982 (2016)

    Article  CAS  Google Scholar 

  25. V. Haridas, A. Sukhananazerin, J. Mary Sneha, B. Pullithadathil, B. Narayanan, α-Fe2O3 loaded less-defective graphene sheets as chemiresistive gas sensor for selective sensing of NH3. Appl. Surf. Sci. 517, 146158 (2020)

    Article  CAS  Google Scholar 

  26. C. Zhu, U. Cakmak, O. Sheikhnejad, X. Cheng, X. Zhang, Xu. Yingming, S. Gao, H. Zhao, L. Huo, Z. Major, One step synthesis of PANI/Fe2O3 nanocomposites and flexible film for enhanced NH3 sensing performance at room temperature. Nanotechnology 30, 255502 (2019)

    Article  CAS  Google Scholar 

  27. S. Sivakumar, L. Nelson Prabu, Synthesis and characterization of α-MnO2 nanoparticles for supercapacitor application. Mater. Today: Proc. 47, 52–55 (2015)

    Google Scholar 

  28. Y. Wang, L. Zhang, H. Hou, Xu. Wenhui, G. Duan, S. He, K. Liu, S. Jiang, Recent progress in carbon-based materials for supercapacitor electrodes: a review. J. Mater. Sci. 56, 173–200 (2021)

    Article  CAS  Google Scholar 

  29. L.T. Quispe, L.G. Luza Mamani, A.A. Baldárrago-Alcántara, L. León Félix, G.F. Goya, J.A. Fuentes-García, D.G. Pacheco-Salazar, J.A.H. Coaquira, Synthesis and characterization of α-Fe2O3 nanoparticles showing potential applications for sensing quaternary ammonium vapor at room temperature. Nanotechnology 33, 937–950 (2022)

    Article  Google Scholar 

  30. S.M.R. Shariatzadeh, M. Salimi, H. Fathinejad, A. Hassani Joshaghani, Nanostructured α-Fe2O3: solvothermal synthesis, characterization, and effect of synthesis parameters on structural properties. Int. J. Eng. 35, 1186–1192 (2022)

    Article  CAS  Google Scholar 

  31. K. Priya, B. Anoop Sunny, D.S. Karthikeyan, Optical, spectroscopic and fiber optic gas sensing of potassium doped α-Fe2O3 nanostructures. Opt. Fiber Technol. 58, 102304 (2020)

    Article  Google Scholar 

  32. S. Siddharth Choudhary, Facile strategy to synthesize donut-shaped α-Fe2O3 nanoparticles for enhanced LPG detection. Sens. Actuators B: Chem. 334, 129668 (2021)

    Article  Google Scholar 

  33. M. Tadic, D. Trpkov, L. Kopanja, S. Vojnovic, M. Panjan, Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties. J. Alloys Compd. 792, 599–609 (2019)

    Article  CAS  Google Scholar 

  34. P. Sun, W. Wang, Y. Liu, Y. Sun, J. Ma, Lu. Geyu, Hydrothermal synthesis of 3D urchin-like α-Fe2O3 nanostructure for gas sensor. Sens. Actuators B. 173, 52–57 (2012)

    Article  CAS  Google Scholar 

  35. X. Zhang, Y. Niu, Y. Li, X. Hou, Y. Wang, R. Bai, J. Zhao, Synthesis, optical and magnetic properties of α-Fe2O3 nanoparticles with various shapes. Mater. Lett. 99, 111–114 (2013)

    Article  CAS  Google Scholar 

  36. P. Sangaiya, R. Jayaprakash, Influence of annealing temperature and electrical conductivity of α-Fe2O3 nanoparticles for Schottky barrier diode. J. Mater. Sci. Mater. Electron. 31, 15153–15174 (2020)

    Article  Google Scholar 

  37. F. Wang, X.F. Qin, Y.F. Meng, Z.L. Guo, L.X. Yang, Y.F. Ming, Hydrothermal synthesis and characterization of α-Fe2O3 nanoparticles. Mater. Sci. Semicond. Proces. 16, 802–806 (2013)

    Article  CAS  Google Scholar 

  38. H. Yan, Su. Xintai, C. Yang, J. Wang, C. Niu, Improved photocatalytic and gas sensing properties of α-Fe2O3 nanoparticles derived from β-FeOOH nanospindles. Ceram. Int. 40, 1729–1733 (2014)

    Article  CAS  Google Scholar 

  39. L. Rajyashree, C. Manoharan, A. Loganathan, M. Venkateshwarlu, The effect of reaction temperature on structural and morphological properties of Mn2O3 nanoparticles and its application of electrochemical and gas sensor. Mater. Technol.: Adv. Perform. Mater. 37(14), 3051–3062 (2022)

    Article  CAS  Google Scholar 

  40. P. Sun, C. Wang, X. Zhou, P. Cheng, K. Shimanoe, Lu. Geyu, N. Yamazoe, Cu-doped α-Fe2O3 hierarchical microcubes: synthesis and gas sensing properties. Sens. Actuators B. 193, 616–622 (2014)

    Article  CAS  Google Scholar 

  41. E. Darezereshki, Synthesis of maghemite (γ-Fe2O3) nanoparticles by wet chemical method at room temperature. Mater. Lett. 64, 1471–1472 (2010)

    Article  CAS  Google Scholar 

  42. H.D. Ruan, R.L. Frost, J.T. Kloprogge, The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 57, 2575–2586 (2001)

    Article  CAS  Google Scholar 

  43. I. Mimouni, A. Bouziani, Y. Naciri, M. Boujnah, M.A.E. Belghiti, M. El Azzouz, Effect of heat treatment on the photocatalytic activity of α-Fe2O3 nanoparticles: towards diclofenac elimination. Environ. Sci. Pollut. Res. 29, 7984–7996 (2022)

    Article  CAS  Google Scholar 

  44. A. Mirzaei, K. Janghorban, B. Hashemi, S.R. Hosseini, M. Bonyani, S. GianlucaLeonardi, A. Bonavita, G. Neri, Synthesis and characterization of mesoporous α-Fe2O3 nanoparticles and investigation of electrical properties of fabricated thick films. Process. Appl. Ceram. 10(4), 209–217 (2016)

    Article  CAS  Google Scholar 

  45. S. Babay, T. Mhiri, M. Toumi, Synthesis, structural and spectroscopic characterizations of maghemite α-Fe2O3 prepared by one-step co-precipitation route. J. Mol. Struct. 1085, 286–293 (2015)

    Article  CAS  Google Scholar 

  46. L. Wang, Lu. Xuegang, C. Han, Lu. Ruie, S. Yang, X. Song, Electrospun hollow cage-like α-Fe2O3 microspheres: synthesis, formation mechanism, and morphology-preserved conversion to Fe nanostructures. Cryst. Eng. Comm 16, 10618–10623 (2014)

    Article  CAS  Google Scholar 

  47. K. Mandana Akia, A. Mkhoyan, K. Lozano, Synthesis of multiwall α-Fe2O3 hollow fibers via a centrifugal spinning technique. Mater. Sci. Eng. C 102, 552–557 (2019)

    Article  Google Scholar 

  48. J. George, K.E. Abraham, The structural phase change of copper ferrite and its gas sensing properties. J. Mater. Sci.: Mater. Electron. 32, 13220–13238 (2021)

    CAS  Google Scholar 

  49. M. Jothibas, Significance of thermal interfacing in hematite (α-Fe2O3) nanoparticles synthesized by sol-gel method and its characteristics properties. Surf. Inter. 26, 101432 (2021)

    Google Scholar 

  50. T. Eman, K. Tawfik, W.H. Eisa, N. Okasha, H.A. Ashry, Influence of annealing temperature of α-Fe2O3 nanoparticles on structure and optical properties. J. Sci. Res. Sci. 37, 73–91 (2020)

    Google Scholar 

  51. M. Sorescu, R.A. Brand, D. Mihaila-Tarabasanu, L. Diamandescu, The crucial role of particle morphology in the magnetic properties of haematite. J. Appl. Phys. 85, 5546–5548 (1999)

    Article  CAS  Google Scholar 

  52. E.D. Smolensky, H.-Y.E. Park, Y. Zhou, G.A. Rolla, M. Marjańska, M. Botta, V.C. Pierre, Scaling laws at the nano size: the effect of particle size and shape on the magnetism and relaxivity of iron oxide nanoparticle contrast agents. J. Mater. Chem. B 1, 2818–2828 (2013)

    Article  CAS  Google Scholar 

  53. B. Vallina, J.D. Rodriguez-Blanco, A.P. Brown, L.G. Benning, J.A. Blanco, Enhanced magnetic coercivity of α-FeO obtained from carbonated 2-line ferrihydrite. J. Nanopart. Res. 16(3), 2322 (2014)

    Article  Google Scholar 

  54. S. Nelson Amirtharaj, M. Mariappan, Rapid and controllable synthesis of Mn2O3 nanorods via a sonochemical method for supercapacitor electrode application. Appl. Phys. A 127, 607 (2021)

    Article  Google Scholar 

  55. J.C. Mary, S. Siva Shalini, R. Balamurugan, M.P. Harikrishnan, A. Chandra Bose, Supercapacitor and non-enzymatic biosensor application of an Mn2O3/NiCo2O4 composite material. J. Chem. 44, 11316–11323 (2020)

    CAS  Google Scholar 

  56. A.J. Kulandaisamy, J.R. Reddy, P. Srinivasan, K.J. Babu, G. Mani, P. Shankar, J.B.B. Rayappan, Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: effect of Mg doping. J. Alloys Compd. 688, 422–429 (2016)

    Article  CAS  Google Scholar 

  57. R. Sankarganesh, M. Navaneethan, G.K. Mani, S. Ponnusamy, K. Tsuchiya, C. Muthamizhchelvan, S. Kawasakie, Y. Hayakawa, Influence of Al doping on the structural, morphological, optical, and gas sensing properties of ZnO nanorods. J. Alloys Compd. 698, 555–564 (2017)

    Article  CAS  Google Scholar 

  58. D.K. Bandgar, S.T. Navale, A.T. Mane, S.K. Gupta, D.K. Aswal, V.B. Patil, Ammonia sensing properties of polyaniline/α-Fe2O3 hybrid nanocomposites. Synthetic Metals 204, 1–9 (2015)

    Article  CAS  Google Scholar 

  59. S.G. Pawar, S.L. Patil, M.A. Chougule, B.T. Raut, S.A. Pawar, R.N. Mulik, V.B. Patil, Nanocrystalline TiO2 thin films for NH3 monitoring: microstructural and physical characterization. J. Mater. Sci. Mater. Electron. 23, 273–279 (2012)

    Article  CAS  Google Scholar 

  60. G.K. Mani, J.B.B. Rayappan, Novel and facile synthesis of randomly interconnected ZnO nanoplatelets using spray pyrolysis and their room temperature sensing characteristics. Sens. Actuators B 198, 125–133 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for the research reported in the article.

Author information

Authors and Affiliations

Authors

Contributions

LR contributed to conceptualization and writing and designing the study; CMcontributed to investigation, methodology, and supervision; AL contributed review and investigation. MV contributed to formal analysis (supporting). All authors read and approved the manuscript.

Corresponding authors

Correspondence to L. Rajyashree or C. Manoharan.

Ethics declarations

Conflict of interest

The author declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajyashree, L., Manoharan, C., Loganathan, A. et al. Electrochemical and sensing properties of α-Fe2O3 nanoparticles synthesized using hydrothermal method at low reaction temperature. J Mater Sci: Mater Electron 34, 462 (2023). https://doi.org/10.1007/s10854-023-09822-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09822-9

Navigation