Skip to main content
Log in

Structural, Optical and Magnetic Properties of Dy-doped In2O3 Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

(In1−xDyx)2O3 (x = 0, 0.05, 0.10) nanoparticles with a particle size of 15–22 nm were obtained by an auto-combustion method. The powder x-ray diffraction (XRD), Raman and x-ray absorption near edge spectral (XANES) analysis revealed a cubic bixbyite structure (space group Ia-3). The presence of Dy3+ ions in the In2O3 host lattice was confirmed from XPS data. The high-resolution transition electron microscopic (HRTEM) and XANES revealed the single phase (solid solution) nature of the nanoparticles. The optical band gap was found to increase from 3.57 eV to 3.64 eV by doping Dy into the In2O3 lattice. Photoluminescence spectra shows emission in the yellow region probably due to oxygen related vacancies. A weak ferromagnetic property was seen for Dy-doped In2O3 at room temperature, while pure In2O3 is diamagnetic. It seems that Dy:In2O3 is not a suitable␣system to consider for dilute magnetic semiconductors in spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Dietl, Nat. Mater. 2, 646 (2003).

    CAS  Google Scholar 

  2. X. Huang, A. Makmal, J.R. Chelikowsky, and L. Kronik, Phys. Rev. Lett. 94, 236801 (2005).

    Google Scholar 

  3. J.M.D. Coey, Curr. Opin. Solid State Mater. Sci. 10, 83 (2006).

    CAS  Google Scholar 

  4. K. Wongsaprom, R. Jareanboon, S. Kingcha, S. Pinitsoontorn, and W. Ponhan, J. Supercond. Nov. Magn. 30, 1053 (2017).

    CAS  Google Scholar 

  5. S.A. Chambers, T.C. Droubay, C.M. Wang, K.M. Rosso, S.M. Heald, D.A. Schwartz, K.R. Kittilstved, and D.R. Gamelin, Materialstoday 9, 28 (2006). https://doi.org/10.1016/S1369-7021(06)71692-3.

    Article  CAS  Google Scholar 

  6. S.K.S. Patel, S. Kurian, and N.S. Gajbhiye, Mater. Res. Bull. 48, 655 (2013).

    CAS  Google Scholar 

  7. J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Yu, Z. Zhang, Y. Mao, S.C.I. Wang, Y. Shen, and Y. Tong, Sci. Rep. 3, 1021 (2013).

    Google Scholar 

  8. S. Phokha, S. Pinitsoontorn, and S. Maensiri, J. Appl. Phys. 112, 113904 (2012).

    Google Scholar 

  9. X. Luo, W.T. Lee, G. Xing, N. Bao, A. Yonis, D. Chu, J. Lee, J. Ding, S. Li, and J. Yi, Nanoscale Res. Lett. 9, 1 (2014).

    Google Scholar 

  10. B.V. Reddy, S.C. Deevi, F.A. Reuse, and S.N. Khanna, Phys. Rev. B 64, 132408 (2001).

    Google Scholar 

  11. M. Jothibas, C. Manoharan, S.J. Jeyakumar, and P. Praveen, J. Mater. Sci. Mater. Electron. 26, 9600 (2015). https://doi.org/10.1007/s10854-015-3623-x.

    Article  CAS  Google Scholar 

  12. L.M. Huang, C.M. Araujo, and R. Ahuja, EPL 87, 27013 (2009).

    Google Scholar 

  13. W. Xu, Y. Liu, B. Chen, D.-B. Liu, Y.-H. Lin, and A. Marcelli, Phys. Chem. Chem. Phys. 15, 17595 (2013).

    CAS  Google Scholar 

  14. S. Kohiki, M. Sasaki, Y. Murakawa, K. Hori, K. Okada, H. Shimooka, T. Tajiri, H. Deguchi, S. Matsushima, M. Oku, T. Shishido, M. Arai, M. Mitome, and Y. Bando, Thin Solid Films 505, 122 (2006).

    CAS  Google Scholar 

  15. P. Kharel, C. Sudakar, M.B. Sahana, G. Lawes, R. Suryanarayanan, R. Naik, and V.M. Naik, J. Appl. Phys. 101, 1 (2007).

    Google Scholar 

  16. N. Sai Krishna, S. Kaleemulla, G. Amarendra, N.M. Rao, C. Krishnamoorthi, M.R. Begam, I. Omkaram, and D.S. Reddy, J. Alloys Compd. 637, 436 (2015).

  17. X. Meng, L. Tang, and J. Li, J. Phys. Chem. C 114, 17569 (2010).

    CAS  Google Scholar 

  18. A. Gupta, H. Cao, K. Parekh, K.V. Rao, A.R. Raju, and U.V. Waghmare, J. Appl. Phys. 101, 09N513 (2007).

    Google Scholar 

  19. G. Dascalu, T. Popescu, M. Feder, and O.F. Caltun, J. Magn. Magn. Mater. 333, 69 (2013).

    CAS  Google Scholar 

  20. T.O.L. Sunde, M. Lindgren, T.O. Mason, M.A. Einarsrud, and T. Grande, Dalt. Trans. 43, 9620 (2014).

    CAS  Google Scholar 

  21. F.Y. Lo, Y.C. Ting, K.C. Chou, T.C. Hsieh, C.W. Ye, Y.Y. Hsu, M.Y. Chern, and H.L. Liu, J. Appl. Phys. 117, 1 (2015).

    Google Scholar 

  22. G. Peleckis, X.L. Wang, S.X. Dou, P. Munroe, J. Ding, and B. Lee, J. Appl. Phys. 103, 07D113 (2008). https://doi.org/10.1063/1.2830830.

    Article  CAS  Google Scholar 

  23. L. Xu, B. Dong, Y. Wang, X. Bai, J. Chen, Q. Liu, and H. Song, J. Phys. Chem. C 114, 9089 (2010).

    CAS  Google Scholar 

  24. Y. Wang, Y. Zhu, X. Xu, J. Huang, Z. Lu, and D. Qiu, RSC Adv. 7, 54500 (2017).

    CAS  Google Scholar 

  25. K. Anand, J. Kaur, R.C. Singh, and R. Thangaraj, Chem. Phys. Lett. 670, 37 (2017).

    CAS  Google Scholar 

  26. G. Hosamani, B.N. Jagadale, J. Manjanna, S.M. Shivaprasad, and D.K. Shukla, J. Mater. Sci. Mater. Electron. 31, 7871 (2020).

    CAS  Google Scholar 

  27. A.N. Ökte, Appl. Catal. A Gen. 475, 27 (2014).

    Google Scholar 

  28. A. Singhal, S.N. Achary, J. Manjanna, O.D. Jayakumar, R.M. Kadam, and A.K. Tyagi, J. Phys. Chem. C 113, 3600 (2009).

    CAS  Google Scholar 

  29. Y. An, Y. Xing, F. Pan, Z. Wu, and J. Liu, Phys. Chem. Chem. Phys. 18, 13701 (2016).

    CAS  Google Scholar 

  30. C. Jayachandraiah, K. Siva Kumar, G. Krishnaiah, and N. Madhusudhana Rao, J. Alloys Compd. 623, 248 (2015)

  31. J. Rodríguez-Carvajal, Phys. B 192, 55 (1993).

    Google Scholar 

  32. J. Chandradass, D.S. Bae, and K.H. Kim, Adv. Powder Technol. 22, 370 (2011).

    CAS  Google Scholar 

  33. M. Hafeez, T. Zhai, A.S. Bhatti, Y. Bando, and D. Golberg, Cryst. Growth Des. 12, 4935 (2012).

    CAS  Google Scholar 

  34. C. Kranert, R. Schmidt-Grund, and M. Grundmann, Phys. Status Solidi Rapid Res. Lett. 8, 554 (2014).

  35. O.M. Berengue, A.D. Rodrigues, C.J. Dalmaschio, A.J.C. Lanfredi, E.R. Leite, and A.J. Chiquito, J. Phys. D Appl. Phys. 43, 045401 (2010).

    Google Scholar 

  36. M.L. Myrick, M.N. Simcock, M. Baranowski, H. Brooke, S.L. Morgan, and J.N. McCutcheon, Appl. Spectrosc. Rev. 46, 140 (2011).

    Google Scholar 

  37. M.A. Dar and D. Varshney, RSC Adv. 8, 14120 (2018).

    CAS  Google Scholar 

  38. A. Chanda, S. Gupta, M. Vasundhara, S.R. Joshi, G.R. Mutta, and J. Singh, RSC Adv. 7, 50527 (2017).

    CAS  Google Scholar 

  39. B. Pujilaksono, U. Klement, L. Nyborg, U. Jelvestam, S. Hill, and D. Burgard, Mater. Charact. 54, 1 (2005).

    CAS  Google Scholar 

  40. D. Yang, Y. An, S. Wang, Z. Wu, and J. Liu, RSC Adv. 4, 33680 (2014).

    CAS  Google Scholar 

  41. D. Barreca, A. Gasparotto, A. Milanov, E. Tondello, A. Devi, and R.A. Fischer, Surf. Sci. Spectra 14, 52 (2007). https://doi.org/10.1116/11.20080702.

    Article  CAS  Google Scholar 

  42. A.V. Fetisov, G.A. Kozhina, SKh Estemirova, V.B. Fetisov, and R.I. Gulyaeva, Physica C 508, 62 (2015). https://doi.org/10.1016/j.physc.2014.11.003.

    Article  CAS  Google Scholar 

  43. F.M.F. de Groot, J. Electron Spectros. Relat. Phenomena 62, 111 (1993). https://doi.org/10.1016/0368-2048(93)80009-B.

    Article  Google Scholar 

  44. O.D. Jayakumar, I.K. Gopalakrishnan, S.K. Kulshreshtha, A. Gupta, K.V. Rao, D.V. Louzguine-Luzgin, A. Inoue, P.A. Glans, J.-H. Guo, K. Samanta, M.K. Singh, and R.S. Katiyar, Appl. Phys. Lett. 91, 052504 (2007). https://doi.org/10.1063/1.2757589.

    Article  CAS  Google Scholar 

  45. B. Gilbert, B.H. Frazer, A. Belz, P.G. Conrad, K.H. Nealson, D. Haskel, J.C. Lang, G. Srajer, and G. De Stasio, J. Phys. Chem. A 107, 2839 (2003). https://doi.org/10.1021/jp021493s.

    Article  CAS  Google Scholar 

  46. M. Kobayashi, Y. Ishida, J.I. Hwang, G.S. Song, M. Takizawa, A. Fujimori, Y. Takeda, T. Ohkochi, T. Okane, Y. Saitoh, H. Yamagami, A. Gupta, H.T. Cao, and K.V. Rao, Phys. Rev. B 79, 205203 (2009). https://doi.org/10.1103/PhysRevB.79.205203.

    Article  CAS  Google Scholar 

  47. F.M.F. de Groot, M. Grioni, J.C. Fuggle, J. Ghijsen, and G.A. Sawatzky, Phys. Rev. B 40, 5715 (1989).

    Google Scholar 

  48. L.F.J. Piper, A. DeMasi, S.W. Cho, K.E. Smith, F. Fuchs, F. Bechstedt, C. Körber, A. Klein, D.J. Payne, and R.G. Egdell, Appl. Phys. Lett. 94, 022105 (2009). https://doi.org/10.1063/1.3070524.

    Article  CAS  Google Scholar 

  49. M. Zikriya, Y.F. Nadaf, P.V. Bharathy, and C.G. Renuka, J. Rare Earths 37, 24 (2019).

    CAS  Google Scholar 

  50. Y. Li, Y. Bando, and D. Golberg, Adv. Mater. 15, 581 (2003). https://doi.org/10.1002/adma.200304539.

    Article  CAS  Google Scholar 

  51. P.K. Sharma, R.K. Dutta, R.J. Choudhary, and A.C. Pandey, CrystEngComm 15, 4438 (2013). https://doi.org/10.1039/C3CE27107B.

    Article  CAS  Google Scholar 

  52. Y.A. Yamusa, R. Hussin, W. Shamsuri, N.W. Wan, S.A. Dalhatu, and A.M. Aliyu, Adv. Sci. Lett. 24, 3589 (2018). https://doi.org/10.1166/asl.2018.11442.

    Article  Google Scholar 

  53. S. Dutta, S. Som, and S.K. Sharma, RSC Adv. 5, 7380 (2015). https://doi.org/10.1039/C4RA12447B.

    Article  CAS  Google Scholar 

  54. D.P. Dutta, V. Sudarsan, P. Srinivasu, A. Vinu, and A.K. Tyagi, J. Phys. Chem. C 112, 6781 (2008).

    CAS  Google Scholar 

  55. J. Yin, F. Xu, H. Qu, C. Li, S. Liu, L. Liu, and Y. Shao, Phys. Chem. Chem. Phys. 21, 11883 (2019).

    CAS  Google Scholar 

  56. S. Bao, H. Liu, Y. Liu, W. Yang, Y. Wang, Y. Yu, Y. Sun, and K. Li, Chemosphere 257, 127245 (2020).

    CAS  Google Scholar 

  57. Y. Wang, S. Bao, Y. Liu, W. Yang, Y. Yu, M. Feng, and K. Li, Appl. Surf. Sci. 510, 145495 (2020).

    CAS  Google Scholar 

  58. X. Meng, Y. Liu, G. Han, W. Yang, and Y. Yu, Carbon 162, 356 (2020).

    CAS  Google Scholar 

  59. X. Meng, W. Yang, G. Han, Y. Yu, S. Ma, W. Liu, and Z. Zhan, J. Magn. Magn. Mater. 502, 166518 (2020).

    CAS  Google Scholar 

  60. X. Guo, M. Li, Y. Liu, Y. Huang, S. Geng, W. Yang, and Y. Yu, J. Colloid Interface Sci. 563, 405 (2020).

    CAS  Google Scholar 

  61. S. Kumar, S. Mukherjee, R. Kr. Singh, S. Chatterjee, and A.K. Ghosh, J. Appl. Phys. 110, 103508 (2011). https://doi.org/10.1063/1.3658221

  62. A. Singhal, S.N. Achary, J. Manjanna, S. Chatterjee, P. Ayyub, and A.K. Tyagi, J. Phys. Chem. C 114, 3422 (2010).

    CAS  Google Scholar 

Download references

Acknowledgments

Prof. J. Manjanna gratefully acknowledge the financial support from BRNS/DAE, Govt. of India [37 (2)/14/20/2015/BRNS] and DST-FIST, Govt. of India [SR/FST/CSI-273/2016].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. N. Jagadale or J. Manjanna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosamani, G., Jagadale, B.N., Manjanna, J. et al. Structural, Optical and Magnetic Properties of Dy-doped In2O3 Nanoparticles. J. Electron. Mater. 50, 52–58 (2021). https://doi.org/10.1007/s11664-020-08553-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08553-5

Keywords

Navigation