Skip to main content

Advertisement

Log in

A Comprehensive Study on Hot Deformation Behavior of the Metastable β Titanium Alloy Prepared by Blended Elemental Powder Metallurgy Approach

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The hot deformation behavior of a Ti–5Al–5Mo–5V–3Cr alloy obtained by the Blended Elemental Powder Metallurgy approach was studied. Hot compression tests were performed to determine the stress–strain relationships at temperatures ranging from 800 °C to 1000 °C and strain rates between 0.1 and 20 s−1. Based on the collected data, a constitutive model was developed using an Arrhenius-type equation, and a deformation activation energy map was generated. Processing maps were created using the Dynamic Material Model theory, and a processing window indicating the optimal hot deformation parameters was determined at temperatures between 900 °C and 1000 °C and strain rates of 0.1–2.0 s−1. Microstructure observations confirmed the results of the DMM analysis, with a homogeneous and recrystallized microstructure found under the processing window parameters. The hot-rolling process was designed using FEM modeling and was successfully verified by laboratory tests. The hot-rolling parameters selected based on previous analysis resulted in a fully compacted material with controlled microstructure. The relationship between the deformation parameters, microstructure, hardness, and tensile properties of the Ti–5Al–5Mo–5V–3Cr alloy after hot rolling was analyzed. Hot rolling using the developed thermomechanical parameters resulted in a significant increase in tensile strength from 757 to 1009 MPa. In general, this study provides a comprehensive characterization of the hot deformation behavior of the Ti–5Al–5Mo–5V–3Cr alloy and valuable insights for optimizing its hot-processing parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. J.D. Cotton, R.D. Briggs, R.R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J.C. Fanning: JOM, 2015, vol. 67, pp. 1281–1303.

    Article  CAS  Google Scholar 

  2. J.C. Williams and R.R. Boyer: Metals, 2020, https://doi.org/10.3390/met10060705.

    Article  Google Scholar 

  3. J. Capus: Met. Powder Rep., 2017, vol. 72, pp. 384–88.

    Article  Google Scholar 

  4. E. Calvert, B. Wynne, N. Weston, A. Tudball, and M. Jackson: J. Mater. Process. Technol., 2018, vol. 254, pp. 158–70.

    Article  CAS  Google Scholar 

  5. E.V. Pereloma, D.G. Savvakin, A. Carman, A.A. Gazder, and O.M. Ivasishin: Key Eng. Mater., 2012, vol. 520, pp. 49–56.

    Article  CAS  Google Scholar 

  6. L. Bolzoni, E.M. Ruiz-Navas, and E. Gordo: Mater. Sci. Eng. C, 2015, vol. 49, pp. 400–07.

    Article  CAS  Google Scholar 

  7. M. Ahmed, D.G. Savvakin, O.M. Ivasishin, and E.V. Pereloma: J. Alloys Compd., 2017, vol. 714, pp. 610–18.

    Article  CAS  Google Scholar 

  8. C.-M. Li, L. Huang, C.-L. Li, S.-X. Hui, Y. Yu, M.-J. Zhao, S.-Q. Guo, and J.-J. Li: Rare Met., 2022, https://doi.org/10.1007/s12598-021-01861-7.

    Article  Google Scholar 

  9. Q. Zhao, Y. Chen, Y. Xu, R. Torrens, L. Bolzoni, and F. Yang: Mater. Des., 2021, vol. 200, 109457.

    Article  CAS  Google Scholar 

  10. J. Fan, H. Kou, Y. Zhang, L. Germain, K. Hua, L. Tang, C. Esling, and J. Li: J. Alloys Compd., 2019, vol. 770, pp. 183–93.

    Article  CAS  Google Scholar 

  11. Y.C. Lin, J. Huang, H.B. Li, and D.D. Chen: Vacuum, 2018, vol. 157, pp. 83–91.

    Article  ADS  CAS  Google Scholar 

  12. O. Lypchanskyi, T. Śleboda, A. Łukaszek-Sołek, K. Zyguła, and M. Wojtaszek: Materials, 2021, vol. 14, p. 2021.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. K. Zyguła, M. Wojtaszek, O. Lypchanskyi, T. Śleboda, G. Korpała, and U. Prahl: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 5314–23. https://doi.org/10.1007/s11661-019-05434-3.

    Article  ADS  CAS  Google Scholar 

  14. K. Zyguła, M. Wojtaszek, T. Śleboda, O. Lypchanskyi, M. Rumiński, G. Korpała, and U. Prahl: Procedia Manuf., 2020, vol. 50, pp. 546–51.

    Article  Google Scholar 

  15. O. Lypchanskyi, T. Śleboda, K. Zyguła, A. Łukaszek-Sołek, and M. Wojtaszek: Materials, 2020, vol. 13, p. 3629.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. L. Kang and C. Yang: Adv. Eng. Mater., 2019, vol. 21, p. 1801359.

    Article  Google Scholar 

  17. K. Zyguła and M. Wojtaszek: Arch. Metall. Mater., 2020, vol. 65, pp. 287–93.

    Google Scholar 

  18. K. Zyguła, M. Wojtaszek, T. Śleboda, S. Lech, O. Lypchanskyi, G. Korpała, and U. Prahl: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 1699–1713.

    Article  ADS  Google Scholar 

  19. D. Gomez-Marquez, E. Ledesma-Orozco, R. Hino, E. Aguilera-Gomez, G. Korpała, and U. Prahl: SN Appl. Sci., 2022, https://doi.org/10.1007/s42452-022-05093-x.

    Article  Google Scholar 

  20. P. Christiansen, P.A.F. Martins, and N. Bay: Exp. Mech., 2016, vol. 56, pp. 1271–79.

    Article  Google Scholar 

  21. Q. Zhao, F. Yang, R. Torrens, and L. Bolzoni: Int. J. Refract. Met. Hard Mater., 2020, vol. 90, 105235.

    Article  CAS  Google Scholar 

  22. J. Sun, Z. Zhang, M. Zhang, F. Jiang, and M. Ding: J. Alloys Compd., 2016, vol. 663, pp. 769–74.

    Article  CAS  Google Scholar 

  23. Y.D. Im, Y.K. Lee, and K.H. Song: Mater. Sci. Eng. A, 2018, vol. 725, pp. 479–87.

    Article  CAS  Google Scholar 

  24. C. Li, L. Huang, M. Zhao, S. Guo, and J. Li: Mater. Sci. Eng. A, 2021, vol. 814, 141231.

    Article  CAS  Google Scholar 

  25. Q. Zhao, F. Yang, R. Torrens, and L. Bolzoni: Mater. Des., 2019, vol. 169, 107682.

    Article  CAS  Google Scholar 

  26. H. Matsumoto, M. Kitamura, Y. Li, Y. Koizumi, and A. Chiba: Mater. Sci. Eng. A, 2014, vol. 611, pp. 337–44.

    Article  CAS  Google Scholar 

  27. M.L. Wasz, F.R. Brotzen, R.B. McLellan, and A.J. Griffin: Int. Mater. Rev., 1996, vol. 41, pp. 1–12.

    Article  CAS  Google Scholar 

  28. X. Xu, Y. Han, C. Li, P. Nash, D. Mangabhai, and W. Lu: J. Mater. Res., 2015, vol. 30, pp. 1056–64.

    Article  ADS  CAS  Google Scholar 

  29. Y.V.R.K. Prasad and T. Seshacharyulu: Mater. Sci. Eng. A, 1998, vol. 243, pp. 82–88.

    Article  Google Scholar 

  30. B. Liu, Y. Liu, W. Zhang, and J.S. Huang: Intermetallics, 2011, vol. 19, pp. 154–59.

    Article  CAS  Google Scholar 

  31. J. Zhang, H. Di, H. Wang, K. Mao, T. Ma, and Y. Cao: J. Mater. Sci., 2012, vol. 47, pp. 4000–11.

    Article  ADS  CAS  Google Scholar 

  32. W. Chuan and H. Liang: Vacuum, 2018, vol. 156, pp. 384–401.

    Article  ADS  Google Scholar 

  33. F. Warchomicka, C. Poletti, and M. Stockinger: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8277–85.

    Article  CAS  Google Scholar 

  34. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker: Metall. Trans. A, 1984, vol. 15, pp. 1883–92.

    Article  Google Scholar 

  35. S. Nemat-Nasser, W.G. Guo, and J.Y. Cheng: Acta Mater., 1999, vol. 47, pp. 3705–20.

    Article  ADS  CAS  Google Scholar 

  36. S.L. Semiatin, V. Seetharaman, and I. Weiss: Mater. Sci. Eng. A, 1999, vol. 263, pp. 257–71.

    Article  Google Scholar 

  37. A. Dehghan-Manshadi and R.J. Dippenaar: Mater. Sci. Eng. A, 2012, vol. 552, pp. 451–56.

    Article  CAS  Google Scholar 

  38. S. Mandal, B.T. Gockel, S. Balachandran, D. Banerjee, and A.D. Rollett: Int. J. Plast., 2017, vol. 94, pp. 57–73.

    Article  CAS  Google Scholar 

  39. Y. Sun, B. Huang, D.A. Puleo, and I.S. Jawahir: Procedia CIRP, 2015, vol. 31, pp. 477–82.

    Article  Google Scholar 

  40. Y. Kaynak, A. Gharibi, and M. Ozkutuk: Int. J. Adv. Manuf. Technol., 2018, vol. 94, pp. 1411–28.

    Article  Google Scholar 

  41. M. Wojtaszek, G. Korpała, T. Śleboda, K. Zyguła, and U. Prahl: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 5790–5805.

    Article  ADS  Google Scholar 

  42. S.I. Wright, M.M. Nowell, and D.P. Field: Microsc. Microanal., 2011, vol. 17, pp. 316–29.

    Article  ADS  CAS  PubMed  Google Scholar 

  43. J. Lei, W. Zhu, L. Chen, Q. Sun, L. Xiao, and J. Sun: Mater. Today Commun., 2020, vol. 23, 100873.

    Article  CAS  Google Scholar 

  44. Q.Y. Zhao, F. Yang, R. Torrens, and L. Bolzoni: Mater. Charact., 2019, vol. 149, pp. 226–38.

    Article  CAS  Google Scholar 

  45. A. Carman, L.C. Zhang, O.M. Ivasishin, D.G. Savvakin, M.V. Matviychuk, and E.V. Pereloma: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1686–93.

    Article  Google Scholar 

  46. S. Nag, R. Banerjee, J.Y. Hwang, M. Harper, and H.L. Fraser: Philos. Mag., 2009, vol. 89, pp. 535–52.

    Article  ADS  CAS  Google Scholar 

  47. H. Nakajima and M. Koiwa: ISIJ Int., 1991, vol. 31, pp. 757–66.

    Article  CAS  Google Scholar 

  48. M. Ahmed, A.A. Gazder, D.G. Savvakin, O.M. Ivasishin, and E.V. Pereloma: J. Mater. Sci., 2012, vol. 47, pp. 7013–25.

    Article  ADS  CAS  Google Scholar 

  49. M. Sen, S. Suman, T. Banerjee, A. Bhattacharjee, and S.K. Kar: Mater. Sci. Eng. A, 2019, vol. 753, pp. 156–67.

    Article  CAS  Google Scholar 

  50. Z.X. Du, S.L. Xiao, Y.P. Shen, J.S. Liu, J. Liu, L.J. Xu, F.T. Kong, and Y.Y. Chen: Mater. Sci. Eng. A, 2015, vol. 631, pp. 67–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Polish Ministry of Science and Higher Education is gratefully acknowledged (AGH-UST Statutory Research Project No. 16.16.110.663). Research project is partly supported by program, “Excellence Initiative – Research University” for the AGH University of Krakow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystian Zyguła.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zyguła, K., Lypchanskyi, O., Łukaszek-Sołek, A. et al. A Comprehensive Study on Hot Deformation Behavior of the Metastable β Titanium Alloy Prepared by Blended Elemental Powder Metallurgy Approach. Metall Mater Trans A 55, 933–954 (2024). https://doi.org/10.1007/s11661-024-07297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-024-07297-9

Navigation