Skip to main content
Log in

The Influence of a TiN Film on the Electronic Contribution to the Thermal Conductivity of a TiC Film in a TiN-TiC Layer System

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

TiC and TiN films were deposited by reactive magnetron sputtering on Si substrates. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterization of the microstructure and interface structure have been carried out and the stoichiometric composition of TiC is determined. Thermal conductivity and interface thermal conductance between different layers in the films are evaluated by the transient thermo reflectance (TTR) and three-omega (3-ω) methods. The results showed that the thermal conductivity of the TiC films increased with temperature. The thermal conductivity of TiC in the absence of TiN is dominated by phonon contribution. The electronic contribution to the thermal conductivity of TiC in the presence of TiN is found to be more significant. The interface thermal conductance of the TiC/TiN interface is much larger than that of interfaces at Au/TiC, TiC/Si, or TiN/Si. The interface thermal conductance between TiC and TiN is reduced by the layer formed as a result of interdiffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.S. Williams: J. Met., 1998, vol. 40, pp. 62–66.

    Google Scholar 

  2. D.T. Morelli: Phys. Rev. B, 1991, vol. 44, pp. 5453–58.

    Article  Google Scholar 

  3. L.G. Radosevich and W.S. Williams: Phys. Rev., 1969, vol. 181, pp. 1110–17.

    Article  Google Scholar 

  4. H.O. Pierson: Handbook of Refractory Carbides and Nitrides, Noyes Publications, Westwood, NJ, 1996.

    Google Scholar 

  5. W. Karr, D.G. Cahill, I. Petrov, and J.E. Greene: Phys. Rev. B, 2000, vol. 61, pp. 16137–43.

    Article  Google Scholar 

  6. S.N. Yoganand, M.S. Raghuveer, K. Jagannadham, L. Wu, A. Karoui, and G. Rozgonyi: Appl. Phys. Lett., 2002, vol. 80, pp. 79–81.

    Article  Google Scholar 

  7. M. Azadi, A.S. Rouhaghdam, and S. Ahangarani: Strength Mater., 2016, vol. 48, pp. 279–89.

    Article  Google Scholar 

  8. K. Jagannadham: J. Vac. Sci. Technol. A, 2015, vol. 33A, pp. 031514-1.

    Google Scholar 

  9. K. Jagannadham: IEEE Trans. Electr. Dev., 2016, vol. 63, pp. 432–38.

    Article  Google Scholar 

  10. M.A. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai, and K.E. Goodson: ASME J. Heat Transfer, 2008, vol. 130, pp. 052401-1.

    Article  Google Scholar 

  11. W.A. Harrison: Solid State Theory, Dover Publications Inc., New York, NY, 1979, p. 263.

    Google Scholar 

  12. R.J. Stoner, H.J. Maris, T.R. Anthony, and W.F. Banholzer: Phys. Rev. Lett., 1992, vol. 68, pp. 1563–66.

    Article  Google Scholar 

  13. D.G. Cahill: Rev. Sci. Instr., 1990, vol. 61, pp. 802–08.

    Article  Google Scholar 

  14. C. J. Glassbrenner and G. A. Slack: Phys. Rev., 1964, vol. 122, pp. 1058-69.

    Article  Google Scholar 

  15. S.-H. Jhi, J. Ihm, S.G. Louie, and M.L. Cohen: Nature, 1999, vol. 399, pp. 132–34.

    Article  Google Scholar 

  16. G.S. Upadhyaya: Nature of Properties of Refractory Carbides, Nova Science Publishers, Commack, NY, 1996, p. 285.

    Google Scholar 

  17. J.J. Freeman and A.C. Anderson: Phys. Rev. B, 1986, vol. 34, pp. 5684–90.

    Article  Google Scholar 

  18. B.N.J. Persson: J. Phys. Condens. Matter, 2014, vol. 26, pp. 015009-1.

    Article  Google Scholar 

  19. A. Majumdar and P. Reddy: Appl. Phys. Lett., 2004, vol. 84, pp. 4768–71

    Article  Google Scholar 

  20. A. Kardakova, M. Finkel, D. Morozov, V. Kovalyuk, P. An, C. Dunscombe, M. Tarkhov, P. Mauskopf, T.M. Klapwijk, and G. Goltsman: Appl. Phys. Lett., 2013, vol. 103, pp. 252602-1

    Article  Google Scholar 

  21. A. Neckel, P. Rastl, R. Eibler, P. Weinberger, and K. Schwarz: J. Phys. C: Solid State Phys., 1976, vol. 9, pp. 579–92.

    Article  Google Scholar 

  22. B.C. Gundrum, D.G. Cahill, and R.S. Averback: Phys. Rev. B, 2005, vol. 72, pp. 245426-1.

    Article  Google Scholar 

  23. A. Minnich and G. Chen: Appl. Phys. Lett., 2007, vol. 91, pp. 073105-1.

    Article  Google Scholar 

  24. S.P. Dodd, M. Cankurtaran, and B. James: J. Mater. Sci., 2003, vol. 38, pp. 1107–15.

    Article  Google Scholar 

  25. N. Yana, S. Srivastava, A.K. Gupta, and Y. Srivastava: Open J. Mod. Phys., 2014, vol. 1, pp. 24–28.

    Google Scholar 

  26. T. Beechem, S. Graham, P. Hopkins, and P. Norris: Appl. Phys. Lett., 2007, vol. 90, pp. 054104-1.

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed, in part, at the Analytical Instrumentation Facility (AIF), which is supported by the State of North Carolina and the National Science Foundation (Award No. ECCS-1542015). The AIF is a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), a site in the National Nanotechnology Coordinated Infrastructure (NNCI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jagannadham.

Additional information

Manuscript submitted July 20 2017

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1456 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagannadham, K. The Influence of a TiN Film on the Electronic Contribution to the Thermal Conductivity of a TiC Film in a TiN-TiC Layer System. Metall Mater Trans A 49, 346–355 (2018). https://doi.org/10.1007/s11661-017-4401-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4401-6

Navigation