Skip to main content

Advertisement

Log in

Mechanical Behavior of TiN/TiC-n Multilayer Coatings and Ti(C,N) Multicomponent Coatings Produced by PACVD

  • Published:
Strength of Materials Aims and scope

Mechanical properties of multilayer and multicomponent coatings were investigated in this paper. Titanium nitride/titanium carbide (TiN/TiC-n) multilayer and Ti(C,N) multicomponent coatings were prepared on the surface of AISI H13 hot work tool steel by the pulsed-DC plasma assisted chemical vapor deposition (PACVD). The microhardness, the toughness, the wear loss, and the friction coefficient were examined by Vickers hardness test and the pin-on-disk wear test. The optical microscopy was also used to examine worn surfaces and to characterize wear mechanisms. The results obtaiond show that multilayer coatings of TiN/TiC-10 have the lowest friction coefficient (as 0.2) and wear loss, the highest toughness (as 17. 7 MPa∙m 1/2 ) and microhardness (as 3150 VHN) among those values for multicomponent Ti(C,N) coatings and other multilayer coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Dobrzañski, K. Goùombek, J. Mikuùa, and D. Pakuùa, “Multilayer and gradient PVD coatings on the sintered tool materials,” J. Achiev. Mater. Manuf. Eng., 31, No. 2, 170–190 (2008).

    Google Scholar 

  2. F. Kustas, B. Mishra, and J. Zhou, “Fabrication and characterization of TiB2/TiC and tungsten co-sputtered wear coatings,” Surf. Coat. Technol., 153, 25–30 (2002).

    Article  Google Scholar 

  3. E. Pagounis, V. K. Lindroos, “Development and performance of new hard and wear-resistant engineering materials,” J. Mater. Eng. Perform., 6, 749–756 (1997).

    Article  Google Scholar 

  4. M. Azadi, A. S. Rouhaghdam, and S. Ahangarani, “Properties of TiC coating by pulsed DC PACVD,” J. Coat., 2013, 1–5 (2013), Article ID 712812.

  5. C. R. Chen, J. Pascual, F. D. Fischer, et al., “Prediction of the fracture toughness of a ceramic multilayer composite – Modeling and experiments,” Acta Mater., 55, 409– 421 (2007).

    Article  Google Scholar 

  6. A. Roman, D. Chicot, and J. Lesage, “Indentation tests to determine the fracture toughness of nickel phosphorus coatings,” Surf. Coat. Technol., 155, 161–168 (2002).

    Article  Google Scholar 

  7. A. Devia, V. Benavides, E. Restrepo, et al., “Influence substrate temperature on structural properties of TiN/TiC bilayers produced by pulsed arc techniques,” Vacuum, 81, 378–384 (2006).

    Article  Google Scholar 

  8. L. Zhang, H. Yang, X. Pang, et al., “TiN-coating effects on stainless steel tribological behavior under dry and lubricated conditions,” J. Mater. Eng. Perform., 23, 1263– 1269 (2014).

    Article  Google Scholar 

  9. D. Kim, Y. Cho, M. Lee, et al., “Properties of TiN–TiC multilayer coatings using plasma-assisted chemical vapor deposition,” Surf. Coat. Technol., 116–119, 906–910 (1999).

    Article  Google Scholar 

  10. A. Shanaghi, A. S. Rouhaghdam, S. Ahangarani, and P. K. Chu, “Effect of plasma CVD operating temperature on nanomechanical properties of TiC nanostructured coating investigated by atomic force microscopy,” Mater. Res. Bull., 47, 2200–2205 (2012).

    Article  Google Scholar 

  11. H. L. Wang, J. L. He, and M. H. Hon, “Sliding wear resistance of TiCN coatings on tool steel made by plasma-enhanced chemical vapour deposition,” Wear, 169, 195–200 (1993).

    Article  Google Scholar 

  12. M. Takahashi and S. Shimada, “Preparation of composite and compositionally graded TiC–TiN films by liquid injection plasma-enhanced CVD,” Solid State Ionics, 172, 249–252 (2004).

    Article  Google Scholar 

  13. S. K. Kim, T. H. Kim, J. Whöle, and K.-T. Rie, “TiCN coatings on aluminum alloy formed by MO-PACVD,” Surf. Coat. Technol., 131, 121–126 (2000).

    Article  Google Scholar 

  14. Y. He, I. Apachitei, J. Zhou, et al., “Effect of prior plasma nitriding applied to a hot-work tool steel on the scratch-resistant properties of PACVD TiBN and TiCN coatings,” Surf. Coat. Technol., 201, No. 6, 2534–2539 (2006).

    Article  Google Scholar 

  15. Y. He, I. Apachitei, J. Zhou, et al., “The influence of the depth of a plasma nitrided layer in tool-steel substrate on the scratch-resistant properties of PACVD TiBN coating,” Surf. Coat. Technol., 201, No. 16–17, 7036–7042 (2006).

    Google Scholar 

  16. I. Dörfel, W. Österle, I. Urban, et al., “Microstructural characterization of binary and ternary hard coating systems for wear protection. Part II: Ti(CN) PACVD coatings,” Surf. Coat. Technol., 116–119, 898–905 (1999).

    Article  Google Scholar 

  17. S. Ma, K. Xu, and W. Jie, “Plasma nitrided and TiCN coated AISI H13 steel by pulsed dc PECVD and its application for hot-working dies,” Surf. Coat. Technol., 191, 201–205 (2005).

    Article  Google Scholar 

  18. W. Feng, H. Zhou, and S. Yang, “Nano-indentation and wear-resistance behaviors of TiCN films by pulsed plasma on cemented carbide cutting tool,” Mater. Sci. Eng. A, 527, 4767–4770 (2010).

    Article  Google Scholar 

  19. Y. L. Su and W. H. Kao, “Tribological behavior and wear mechanisms of TiN/TiCN/TiN multilayer coatings,” J. Mater. Eng. Perform., 7, 601–612 (1998).

    Article  Google Scholar 

  20. C. Y. H. Lim, S. C. Lim, and K. S. Lee, “Wear of TiC-coated carbide tools in dry turning,” Wear, 225–229, 354–367 (1999).

    Article  Google Scholar 

  21. M. Azadi, A. S. Rouhaghdam, S. Ahangarani, and H. H. Mofidi, “Mechanical behavior of TiN/TiC multilayer coatings fabricated by plasma assisted chemical vapor deposition on AISI H13 hot work tool steel,” Surf. Coat. Technol., 245, 156–166 (2014).

    Article  Google Scholar 

  22. M. S. Mahdipoor, F. Mahboubi, S. Ahangarani, et al., “The influence of plasma nitriding pre-treatment on tribological properties of TiN coatings deposited by PACVD,” J. Mater. Eng. Perform., 21, 958–964 (2012).

    Google Scholar 

  23. A. S. Korhonen and E. Harju, “Surface engineering with light alloys – Hard coatings, thin films, and plasma nitriding,” J. Mater. Eng. Perform., 9, 302–305 (2000).

    Article  Google Scholar 

  24. M. Azadi, A. S. Rouhaghdam, S. Ahangarani, et al., “Mechanical behavior and properties of TiN/TiC coating using PACVD,” Adv. Mater. Res., 829, 476–482 (2014).

    Article  Google Scholar 

  25. M. Azadi, A. S. Rouhaghdam, S. Ahangarani, et al., “Effect of number of layers on the toughness of TiN/TiC multilayer coatings,” Int. J. Microstruct. Mater. Prop., 9, 500–515 (2014).

    Google Scholar 

  26. Y. Zhao, G. Lin, J. Xiao, et al., “TiN/TiC multilayer films deposited by pulse biased arc ion plating,” Vacuum, 85, 1–4 (2010).

    Article  Google Scholar 

  27. R. Venkataraman and R. Krishnamurthy, “Evaluation of fracture toughness of as plasma sprayed alumina–13 wt.% titania coatings by micro-indentation techniques,” J. Eur. Ceram. Soc., 26, 3075–3081 (2006).

    Article  Google Scholar 

  28. D. Nolan, V. Leskovsek, M. Jenko, “Estimation of fracture toughness of nitride compound layers on tool steel by application of the Vickers indentation method,” Surf. Coat. Technol., 201, 182–188 (2006).

    Article  Google Scholar 

  29. C. Liu, K. Liu, H. Yan, et al., “Mechanical properties of TiN/NbN multilayered films prepared by PVD coating,” Adv. Ceram. Sci. Eng., 2, 16–22 (2013).

    Google Scholar 

  30. T. A. Rawdanowicz, V. Godbole, J. Narayan, et al., “The hardnesses and elastic moduli of pulsed laser deposited multilayer AlN/TiN thin films,” Composites Part B: Eng., 30, 657–665 (1999).

    Article  Google Scholar 

  31. A. Kumar, H. L. Chan, and N. B. Dahotre, “Structural and hardness studies of CNX/TiN composite coatings on Si (100) substrates by laser ablation method,” J. Mater. Eng. Perform., 6, 583–585 (1997).

    Article  Google Scholar 

  32. C. A. Freyman and Y. W. Chung, “Synthesis and characterization of hardness-enhanced multilayer oxide films for high-temperature applications,” Surf. Coat. Technol., 202, 4702–4708 (2008).

    Article  Google Scholar 

  33. P. C. Yashar and W. D. Sproul, “Nanometer scale multilayered hard coatings,” Vacuum, 55, 179–190 (1999).

    Article  Google Scholar 

  34. J. Gong, “Determining indentation toughness by incorporating true hardness into fracture mechanics equations,” J. Eur. Ceram. Soc., 19, 1585–1592 (1999).

    Article  Google Scholar 

  35. H. Holleck, “Material selection for hard coatings,” J. Vac. Sci. Technol. A, 4, No. 6, 2661–2669 (1988).

    Article  Google Scholar 

  36. K. Holmberg, A. Matthews, and H. Ronkainen, “Coatings tribology – contact mechanics and surface design,” Tribol. Int., 31, 107–120 (1998).

    Article  Google Scholar 

  37. J. Lee, K. Euh, J. C. Oh, and S. Lee, “Microstructure and hardness improvement of TiC/stainless steel surface composites fabricated by high-energy electron beam irradiation,” Mater. Sci. Eng. A, 323, 251–259 (2002).

    Article  Google Scholar 

  38. J. Pirso, M. Viljus, and S. Letunovits, “Sliding wear of TiC–NiMo cermets,” Tribol. Int., 37, 817–824 (2004).

    Article  Google Scholar 

  39. Y. Y. Guu, J. F. Lin, and C. Ai, “The tribological characteristics of titanium nitride coatings. Part I. Coating thickness effects,” Wear, 194, 12–21 (1996).

    Article  Google Scholar 

  40. Y. M. Zhou, R. Asaki, K. Higashi, et al., “Sliding wear behavior of polycrystalline TiN/CrN multilayers against an alumina ball,” Surf. Coat. Technol., 130, 9–14 (2000).

    Article  Google Scholar 

  41. A. K. Keshri, V. Singh, J. Huang, et al., “Intermediate temperature tribological behavior of carbon nanotube reinforced plasma sprayed aluminum oxide coating,” Surf. Coat. Technol., 204, 1847–1855 (2010).

    Article  Google Scholar 

  42. J. Deng, T. Cao, and L. Liu, “Self-lubricating behaviors of Al2O3/TiB2 ceramic tools in dry high-speed machining of hardened steel,” J. Eur. Ceram. Soc., 25, 1073–1079 (2005).

    Article  Google Scholar 

  43. Z. Tong, C. Ding, and D. Yan, “A fracture model for wear mechanism in plasma sprayed ceramic coating materials,” Wear, 155, 309–316 (1992).

    Article  Google Scholar 

  44. A. J. Lockwood, S. Banfield, A. Leylandand, and B. J. Inkson, “Continuum roughness measurements of a TiN coating during dynamic in-situ wear inside a transmission electron microscope,” in: Proc. EMC2012, Manchester, UK (2012).

  45. M. Scholl, “Abrasive wear of titanium nitride coatings,” Wear, 203–204, 57–64 (1997).

    Article  Google Scholar 

  46. E. Martinez, U. Wiklund, J. Esteve, et al., “Tribological performance of TiN supported molybdenum and tantalum carbide coatings in abrasion and sliding contact,” Wear, 253, 1182–1187 (2002).

    Article  Google Scholar 

  47. M. Bao, X. Xu, H. Zhang, et al., “Tribological behavior at elevated temperature of multilayer TiCN/TiC/TiN hard coatings produced by chemical vapor deposition,” Thin Solid Films, 520, 833–836 (2011).

    Article  Google Scholar 

  48. A. Forn, J. A. Pacas, G. G. Fuentes, and E. Elizalde, “Mechanical and tribological properties of TiCxN1–x wear resistant coatings,” Int. J. Refract. Met. Hard Mater., 19, 507–513 (2001).

    Article  Google Scholar 

  49. C. Jarms, H. R. Stock, H. Berndt, et al., “Influence of the PACVD process parameters on the properties of titanium carbide thin films,” Surf. Coat. Technol., 98, 1547–1552 (1998).

    Article  Google Scholar 

  50. B. Warcholinski, A. Gilewicz, and P. Myslinski, “Tribological properties of TiAICrN thin films,” Rev. Adv. Mater. Sci., 22, 81–88 (2009).

    Google Scholar 

  51. S. Novak, M. Kalin, P. Lukas, et al., “The effect of residual stresses in functionally graded alumina–ZTA composites on their wear and friction behaviour,” J. Eur. Ceram. Soc., 27, 151–156 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Azadi.

Additional information

Translated from Problemy Prochnosti, No. 2, pp. 104 – 117, March – April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azadi, M., Rouhaghdam, A.S. & Ahangarani, S. Mechanical Behavior of TiN/TiC-n Multilayer Coatings and Ti(C,N) Multicomponent Coatings Produced by PACVD. Strength Mater 48, 279–289 (2016). https://doi.org/10.1007/s11223-016-9763-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-016-9763-2

Keywords

Navigation