Skip to main content

Advertisement

Log in

A Current Perspective on the Renewable Energy Hydrogen Production Process

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Hydrogen is a type of clean energy which has the potential to replace the fossil energy for transportation, domestic and industrial applications. To expand the hydrogen production method and reduce the consumption of fossil energy, technologies of using renewable energy to generate hydrogen have been developed widely. Due to the advantages of widespread distribution and various hydrogen production methods, most of the research or review works focus on the solar and biomass energy hydrogen production systems. To achieve a comprehensive acknowledge on the development state of current renewable energy hydrogen production technology, a review on hydrogen production systems driven by solar, wind, biomass, geothermal, ocean and hydropower energy has been presented. The reaction process, energy efficiency, exergy efficiency, hydrogen production rate, economic and environmental performance of these systems have been evaluated. Based on the analysis of these different systems, the challenge and prospects of them are also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He Z., Li R.Z., Analysis and prediction of energy consumption trend in the world. Petroleum & Petrochemical Today, 2016, 24: 01–08.

    Google Scholar 

  2. Acar C., Dincer I., Comparative assessment of hydrogen production methods from renewable and non-renewable methods. International Journal of Hydrogen Energy, 2014, 39: 1–12.

    Article  Google Scholar 

  3. Mazloomi K., Gomes C., Hydrogen as an energy carrier: prospects and challenges. Renewable and Sustainable Energy Reviews, 2012, 16: 3024–3033.

    Article  Google Scholar 

  4. Fayaz H., Saidur R., Razali N., Anuar F.S., Saleman A.R., Islam M.R., An overview of hydrogen as a vehicle fuel. Renewable and Sustainable Energy Reviews, 2012, 16: 5511–5528.

    Article  Google Scholar 

  5. Balat M., Balat M., Political, economic and environmental impacts of biomassbased hydrogen. International Journal of Hydrogen Energy, 2009, 34: 3589–3603.

    Article  Google Scholar 

  6. Holladay J.D., Hu J., King D.L., Wang Y., An overview of hydrogen production technologies. Catalysis Today, 2009, 139: 244–260.

    Article  Google Scholar 

  7. Rasteller A., Alphea Hydrogene: Les voies de productiond’ hydrogene par les Energies Renouvelables. Juin, 2010.

    Google Scholar 

  8. Qin J.Y., Hu E., Li X.H., Solar aided power generation: A review. Energy and Built Environment, 2020, 1: 11–26.

    Article  Google Scholar 

  9. Antoniadou M., Sfaelou S., Dracopoulos V., Lianos P., Platinum-free photoelectron chemical water splitting. Catalysis Communications, 2014, 43: 72–74.

    Article  Google Scholar 

  10. EIS, Wind Energy Programmatic. Wind Energy Basics, 2016. http://windeis.anl.gov/guide/basics/

    Google Scholar 

  11. Ding Z.J., Study on the comprehensive evaluation of hydrogen production technology from biomass. PhD thesis, China University of Mining and Technology, 2010.

    Google Scholar 

  12. Shortall R., Davidsdottir B., Axelsson G., Geothermal energy for sustainable development: A review of sustainability impacts and assessment frame works. Renewable and Sustainable Energy Reviews, 2015, 44: 391–406.

    Article  Google Scholar 

  13. Melikoglu M., Current status and future of ocean energy sources: A global review. Ocean Engineering, 2018, 148: 563–573.

    Article  Google Scholar 

  14. Domfeh M.K., Gyamfi S., Amo-Boateng M., Andoh R., Ofosu E.A., Tabor G., Free surface vortices at hydropower intakes: A state-of-the-art review. Scientific African, 2020, 8: 00355.

    Article  Google Scholar 

  15. Agbossou K., Kolhe M.L., Hamelin J., Bose T.K., Performance of a stand-alone renewable energy system based on energy storage as hydrogen. IEEE Transactions on Energy Conversion, 2004, 19: 633–640.

    Article  ADS  Google Scholar 

  16. Ajanovic A., Haas R., Nakicenovic N., Economic analysis of production and use of hydrogen from solar energy, wind, hydropower and biomass. Proceedings of ISES Solar World Congress: Solar Energy and Human Settlement, Vienna, Austria, 2007, pp. 2496–2500. DOI: https://doi.org/10.1007/978-3-540-75997-3_505.

    Google Scholar 

  17. Koroneos C., Dompros A., Roumbas G., Moussiopoulos N., Life cycle assessment of hydrogen fuel production processes. International Journal of Hydrogen Energy, 2004, 29: 1443–1450.

    Article  Google Scholar 

  18. El-Emam R.S., Ozcan H., Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production. Journal of Cleaner Production, 2019, 220: 593–609.

    Article  Google Scholar 

  19. Reverberi A.P., Klemes J.J., Varbanov P.S., Fabiano B., A review on hydrogen production from hydrogen sulphide by chemical and photochemical methods. Journal of Cleaner Production, 2016, 136: 72–80.

    Article  Google Scholar 

  20. Kalinci Y., Hepbasli A., Dincer I., Biomass-based hydrogen production: A review and analysis. International Journal of Hydrogen Energy, 2009, 34: 8799–8817.

    Article  Google Scholar 

  21. Albr U., Altmann M., Barth F., et al., Study on hydrogen from renewable resources in the EU. Final Report. Ludwig-Bölkow-Systemtechnik (LBST): Ottobrunn, Germany, 2015.

    Google Scholar 

  22. Yilanci A., Dincer I., Ozturk H.K., A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Progress in Energy and Combustion Science, 2009, 35(3): 231–244.

    Article  Google Scholar 

  23. Steinfeld A., Solar thermochemical production of hydrogen-a review. Solar Energy, 2005, 78: 603–615.

    Article  ADS  Google Scholar 

  24. Baykara S.Z., Experimental solar water thermolysis. International Journal of Hydrogen Energy, 2004, 29: 1459–1469.

    Article  Google Scholar 

  25. Villafán-Vidales H.I., Arancibia-Bulnes C.A., Riveros-Rosas D., Romero-Paredes H., Estrada C.A., An overview of the solar thermochemical processes for hydrogen and syngas production: Reactors, and facilities. Renewable and Sustainable Energy Reviews, 2017, 75: 894–908.

    Article  Google Scholar 

  26. Ford N.C., Kane J.W., Solar power. Bulletin of the Atomic Scientists, 1971, 27: 27–31.

    Article  Google Scholar 

  27. Ihara S., Direct thermal decomposition of water. Solar Energy Systems, 1979, pp. 59–79.

    Google Scholar 

  28. Baykara S.Z., Hydrogen production by direct solar thermal decomposition of water, possibilities for improvement of process efficiency. International Journal of Hydrogen Energy, 2004, 29: 1451–1458.

    Article  Google Scholar 

  29. Bilgen E., Galindo J., Baykara S.Z., Experimental study of hydrogen production by direct decomposition of water. Proceedings of the 18th IECEC, New York, 1983, 3: 564–568.

    Google Scholar 

  30. Kogan A., Direct solar thermal splitting of water and on-site separation of the products-II. Experimental feasibility study. International Journal of Hydrogen Energy, 1998, 23: 89–98.

    Article  Google Scholar 

  31. Baykara S.Z., Bilgen E., An overall assessment of hydrogen production by solar water thermolysis. International Journal of Hydrogen Energy, 1989, 14: 881–889.

    Article  Google Scholar 

  32. Steinfeld A., Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. International Journal of Hydrogen Energy, 2002, 27: 611–619.

    Article  Google Scholar 

  33. Agrafiotis C., Roeb M., Konstandopoulos A.G., Nalbandian L., Zaspalis V.T., Sattler C., Solar water splitting for hydrogen production with monolithic reactors. Solar Energy, 2005, 79: 409–421.

    Article  ADS  Google Scholar 

  34. Agrafiotis C., Pagkoura C., Lorentzou S., Kostoglou M., Konstandopoulos A.G., Hydrogen production in solar reactors. Catalysis Today, 2007, 127: 265–277.

    Article  Google Scholar 

  35. Steinfeld A., Spiewak I., Economic evaluation of the solar thermal co-production of zinc and synthesis gas. Energy Conversion and Management, 1998, 39: 1513–1518.

    Article  Google Scholar 

  36. Nakamura T., Hydrogen production from water utilizing solar heat at high temperatures. Solar Energy, 1977, 19: 467–475.

    Article  ADS  Google Scholar 

  37. Steinfeld A., Sanders S., Palumbo R., Design aspects of solar thermochemical engineering-A case of study: two-step water-splitting cycle using the Fe3O4/FeO redox system. Solar Energy, 1999, 65: 43–53.

    Article  ADS  Google Scholar 

  38. Abanades S., Villafán-Vidales I., CO2 and H2O conversion to solar fuels via two-step solar thermochemical looping using iron oxide redox pair. Chemical Engineering Journal, 2011, 75: 368–375.

    Article  Google Scholar 

  39. Charvin P., Abanades S., Florent L., Flamant G., Analysis of a solar chemical processes for hydrogen production from water splitting thermochemical cycles. Energy Conversion and Management, 2008, 49: 1547–1556.

    Article  Google Scholar 

  40. Charvin P., Abanades S., Lemort F., Flamant G., Hydrogen production by three-step solar thermochemical cycles using hydroxides and metal oxide system. Energy Fuels, 2007, 21: 2919–2928.

    Article  Google Scholar 

  41. Palumbo R., Rouanet A., Pichelin G., The solar thermal decomposition of TiO2 above 2200 K and its use in the production of Zn from ZnO. Energy, 1995, 20: 857–868.

    Article  Google Scholar 

  42. Steinfeld A., Solar hydrogen production via two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. International Journal of Hydrogen Energy, 2002, 27: 611–619.

    Article  Google Scholar 

  43. Charvin P., Abanades S., Lemont F., Flamant G., Experimental study of SnO2/SnO/Sn thermochemical systems for solar production of hydrogen. Aiche Journal, 2008, 54: 2759–2767.

    Article  Google Scholar 

  44. Abanades S., CO2 and H2O reduction by solar thermochemical looping using SnO2/SnO redox reactions: thermogravimetric analysis. International Journal of Hydrogen Energy, 2012, 37: 8223–8231.

    Article  Google Scholar 

  45. Alonso E., Pérez-Rábago C., Licurgo J., Fuentealba E., Estrada C., First experimental studies of solar redox reactions of copper oxides for thermochemical energy storage. Solar Energy, 2015, 115: 297–305.

    Article  ADS  Google Scholar 

  46. Abanades S., Flamant G., Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides. Solar Energy, 2006, 80: 1611–1623.

    Article  ADS  Google Scholar 

  47. Kaneko H., Miura T., Fuse A., Ishihara H., Taku S., Fukuzumi H., Rotary-type solar reactor for solar hydrogen production with two-step water splitting process. Energy Fuels, 2007, 21: 2287–2293.

    Article  Google Scholar 

  48. Ngoh S.K., Njomo D., An over view of hydrogen gas production from solar energy. Renewable and Sustainable Energy Reviews, 2012, 16: 6782–6792.

    Article  Google Scholar 

  49. Matovich E., Thagard Technology Company. High temperature chemical reaction processes utilizing fluid wall reactors, US Patent No. 4095974, 1978.

    Google Scholar 

  50. Steinberg M., The direct use of natural gas for conversion of carbonaceous raw materials to fuels and chemical feed stock. International Journal of Hydrogen Energy, 1986, 11(11): 715–720.

    Article  Google Scholar 

  51. Muradov N.Z., How to produce hydrogen from fossil fuels without carbon dioxide emission. International Journal of Hydrogen Energy, 1993, 18(3): 211–215.

    Article  Google Scholar 

  52. Hirsch D., Epstein M., Steinfeld A., The solar thermal decarbonization of natural gas. International Journal of Hydrogen Energy, 2001, 26: 1023–1033.

    Article  Google Scholar 

  53. Dahl J., Tamburini J., Weimer A.W., Lewandowski A., Pitts R., Bingham C., Solar-thermal processing of methane to produce hydrogen and syngas. Energy and Fuels, 2001, 15(5): 1227–1232.

    Article  Google Scholar 

  54. Hirsch D., Steinfeld A., Solar hydrogen production by thermal decomposition of natural gas using a vortex-flow reactor. International Journal of Hydrogen Energy, 2004, 29: 47–55.

    Article  Google Scholar 

  55. Rodat S., Abanades S., Coulié J., Flamant G., Kinetic modelling of methane decomposition in a tubular solar reactor. Chemical Engineering Journal, 2009, 146: 120–127.

    Article  Google Scholar 

  56. Trommer D., Hirsch D., Steinfeld A., Kinetic investigation of the thermal decomposition of CH4 by direct irradiation of a vortex-flow laden with carbon particles. International Journal of Hydrogen Energy, 2004, 29: 627–633.

    Article  Google Scholar 

  57. Dahl J., Buechler K., Finley R., Stanislaus T., Weimer A., Lewandowski A., Rapid solar-thermal dissociation of natural gas in an aerosol flow reactor. Energy, 2004, 29: 715–725.

    Article  Google Scholar 

  58. Muradova Z.N., Veziroglu T.N., From hydrocarbon to hydrogen-carbonto hydrogen economy. International Journal of Hydrogen Energy, 2005, 30: 225–237.

    Article  Google Scholar 

  59. KoumiNgoh S., Njomo D., An overview of hydrogen gas production from solar energy. Renewable and Sustainable Energy Reviews, 2012, (16): 6782–6792.

    Google Scholar 

  60. Anikeev V.I., Bobrin A.S., Otner J., Schmidt S., Funken K.H., Kuzin N.A., Catalytic thermochemical reactor/receiver for solar reforming of natural gas: design and performance. Solar Energy, 1998, 63: 97–104.

    Article  ADS  Google Scholar 

  61. Charvin P., Production d hydrogne par cycles thermochimiques de dissociation de leau couplsune source dnergie solaire Thse de doctorant. Universit de Perpignan, Laboratoire PROMES-CNRS, 2007.

    Google Scholar 

  62. Wörner A., Tamme R., CO2 reforming of methane in a solar driven volumetric receiver-reactor. Catalysis Today, 1998, 46: 165–174.

    Article  Google Scholar 

  63. Stein W., Edwards J., Hinkley J., Sattler C., Natural Gas: Solar-thermal steam reforming. Encyclopedia of Electrochemical Power Sources. 2009, pp. 300–312. DOI: https://doi.org/10.1016/B978-044452745-5.00294-X.

    Chapter  Google Scholar 

  64. Gokon N., Osawa Y., Nakazawa D., Kodama T., Kinetics of CO2 reforming of methane by catalytically activated metallic foam absorber for solar receiver reactors. International Journal of Hydrogen Energy, 2009, 34: 1787–1800.

    Article  Google Scholar 

  65. Abanades S., Kimura H., Otsuka H., Hydrogen production from CO2-free thermal decomposition of methane: design and on-sun testing of a tube-type solar thermochemical reactor. Fuel Process Technology, 2014, 122: 153–162.

    Article  Google Scholar 

  66. Dahl J.K., Weimer A.W., Lewandowski A., Bingham C., Bruetsch F., Steinfeld A., Dry reforming of methane using a solar-thermal aerosol flow reactor. Industrial & Engineering Chemistry Research, 2004, 43: 5489–5495.

    Article  Google Scholar 

  67. Dahl J.K., Buechler K.J., Finley R., Stanislaus T., Weimer A.W., Lewandowski A., Bingham C., Smeets A., Schneider A., Rapid solar-thermal dissociation of natural gas in an aerosol flow reactor. Energy, 2004, 29: 715–725.

    Article  Google Scholar 

  68. Kodama T., Kiyama A., Shimizu K.I., Catalytically activated metal foam absorber for light-to-chemical energy conversion via solar reforming of methane. Energy Fuels, 2003, 17: 13–17.

    Article  Google Scholar 

  69. Berman A., Karn R.K., Epstein M., A new catalyst system for high-temperature solar reforming of methane. Energy Fuels, 2006, pp. 455–462.

    Google Scholar 

  70. Muir J.F., Hogan R.E., Skocypec R.D., Buck R., Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: 1-test and analysis. Solar Energy, 1994, 52: 467–477.

    Article  ADS  Google Scholar 

  71. Buck R., Muir J.F., Hogan R.E., Skocypec R.D., Carbon-dioxide reforming of methane in a solar volumetric receiver reactor-the CAESAR project. Solar Energy Materials, 1991, 24: 449–463.

    Article  Google Scholar 

  72. Rubin R., Karni J., Carbon dioxide reforming of methane in directly irradiated solar reactor with porcupine absorber. Journal of Solar Energy Engineering, 2011, 133: 021008.

    Article  Google Scholar 

  73. Berman A., Rakesh K.K., Epstein M., A new catalyst system for high-temperature solar reforming of methane. Energy Fuels, 2006, 20: 455–462.

    Article  Google Scholar 

  74. Agrafiotis C., Storch H., Roeb M., Sattler C., Solar thermal reforming of methane feed stocks for hydrogen and syngas production-a review. Renewable and Sustainable Energy Reviews, 2014, 29: 656–682.

    Article  Google Scholar 

  75. Pakhare D., Spivey J., A review of dry (CO2) reforming of methane over noble metal catalysts. Chemical Society Reviews, 2014, 43(22): 7813–7837.

    Article  Google Scholar 

  76. Fischer F., Tropsch H., Conversion of methane into hydrogen and carbon monoxide. Brennst-Chemistry, 1928, 3(9): 39–46.

    Google Scholar 

  77. Ashcroft A., Cheetham A., Green M., Partial oxidation of methane to synthesis gas using carbon dioxide. Nature, 1991, 352(6332): 225–226.

    Article  ADS  Google Scholar 

  78. Splymosi F., Kutsan G., Erdohelyi A., Catalytic reaction of CH4 with CO2 over alumina-supported Pt metals. Catalysis Letters, 1991, 11(2): 149–156.

    Article  Google Scholar 

  79. Wang S., Lu G.Q., Millar G.J., Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: state of the art. Energy & Fuels, 1996, 10(4): 896–904.

    Article  Google Scholar 

  80. Bradford M.C.J., Vannice M.A., Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity. Applied Catalysis A: General, 1996, 142(1): 73–96.

    Article  Google Scholar 

  81. Agrafiotis C., Vonstorch H., Roeb M., Solar thermal reforming of methane feed stocks for hydrogen and syngas production: a review. Renewable and Sustainable Energy Reviews, 2014, 29: 656–682.

    Article  Google Scholar 

  82. Kodama T., Kiyama A., Shimizu K.I., Catalytically activated metal foam absorber for light-to-chemical energy conversion via solar reforming of methane. Energy & Fuels, 2003, 17(1): 13–17.

    Article  Google Scholar 

  83. Kodama T., Kiyama A., Moriyama T., Solar methane reforming using a new type of catalytically-activated metallic foam absorber. Journal of Solar Energy Engineering, 2004, 126(2): 808–811.

    Article  Google Scholar 

  84. Gokon N., Osawa Y., Nakazawa D., Kinetics of CO2 reforming of methane by catalytically activated metallic foam absorber for solar receiver-reactors. International Journal of Hydrogen Energy, 2009, 34(4): 1787–1800.

    Article  Google Scholar 

  85. Wang F., Tan J., Ma L., Leng Y., Effects of key factors on solar aided methane steam reforming in porous medium thermochemical reactor. Energy Conversion and Management, 2015, 103: 419–430.

    Article  Google Scholar 

  86. Kotz, Treichel, Weaver. Chemistry & chemical reactivity, Sixth edition. New York: Thomson Brooks/Cole, 2006.

    Google Scholar 

  87. Arena U., Process and technological aspects of municipal solid waste gasification: A review. Waste Management, 2012, 32: 625–639.

    Article  Google Scholar 

  88. Kodama T., Kondoh Y., Tamagawa T., Funatoh A., Shimizu K., Kitayama Y., Fluidized bed coal gasification with CO2 under direct irradiation with concentrated visible light. Energy Fuels, 2002, 16: 1264–1270.

    Article  Google Scholar 

  89. Kodama T., Enomoto S., Hatamachi T., Application of an internally circulating fluidized bed for windowed solar chemicals reactor with direct irradiation of reacting particles. Journal Solar Energy Engineering, 2008, 130: 014504.

    Article  Google Scholar 

  90. Z’Graggen A., Haueter P., Trommer D., Romero M., de Jesus J.C., Steinfled A., Hydrogen production by steam-gasification of petroleum coke using concentrated solar power-II. Reactor design, testing and modeling. International Journal of Hydrogen Energy, 2006, 31: 797–811.

    Article  Google Scholar 

  91. Z’Graggen A., Haueter P., Maag G., Vidal A., Romero M., Steinfeld A., Hydrogen production by steam-gasification of petroleum coke using concentrated solar power-III. Reactor experimentation with slurry feeding. International Journal of Hydrogen Energy, 2007, 32: 992–996.

    Article  Google Scholar 

  92. Z’Graggen A., Haueter P., Maag G., Romero M., Steinfeld A., Hydrogen production by steam-gasification of carbonaceous materials using concentrated solar energy-IV. Reactor experimentation with vacuum residue. International Journal of Hydrogen Energy, 2008, 33: 679–684.

    Article  Google Scholar 

  93. Z’Graggen A., Steinfeld A., Hydrogen production by steam-gasification of carbonaceous materials using concentrated solar energy-V. Reactor modeling, optimization, and scale-up. International Journal of Hydrogen Energy, 2008, 33: 5484–5492.

    Article  Google Scholar 

  94. Piatkowski N., Steinfeld A., Solar-driven coal gasification in a thermally irradiated packed-bed reactor. Energy Fuels, 2008, 22: 2043–2052.

    Article  Google Scholar 

  95. Murray J.P., Fletcher E.A., Reaction of steam with cellulose in a fluidized bed using concentrated sunlight. Energy, 1994, 19: 1083–1098.

    Article  Google Scholar 

  96. Zedtwitz P., Steinfeld A., Steam-gasification of coal in a fluidized-bed/packed bed reactor exposed to concentrated thermal radiation modeling and experimental validation. Industrial & Engineering Chemistry Research, 2005, 44: 3852–3861.

    Article  Google Scholar 

  97. Gokon N., Ono R., Hatamachi T., Liuyun L., Kim H., Kodama T., CO2 gasification of coal cokes using internally circulating fluidized bed reactor by concentrated Xe light irradiation for solar gasification. International Journal of Hydrogen Energy, 2012, 37: 12128–12137.

    Article  Google Scholar 

  98. Puig Arnavat M., Tora E.A., Bruno J.C., Coronas A., State of the art on the reactor designs for solar gasification of carbonaceous feedstock. Solar Energy, 2013, 97: 67–84.

    Article  ADS  Google Scholar 

  99. Kodama T., High-temperature solar chemistry for converting solar heat to chemical fuels. Progress in Energy and Combustion Science, 2003, 29: 567–597.

    Article  Google Scholar 

  100. Ganeshan I.S., Manikandan V.V.S., Sundhar V.R., Sajiv R., Shanthi C., Kottayil S.K., Ramachandran T., Regulated hydrogen production using solar powered electrolyser. International Journal of Hydrogen Energy, 2016, 41: 10322–10326.

    Article  Google Scholar 

  101. Zeng K., Zhang D., Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 2010, 36: 307–326.

    Article  Google Scholar 

  102. Carmo M., Fritz D.L., Mergel J., Stolten D., A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 2013, 38: 4901–4934.

    Article  Google Scholar 

  103. Aricò A.S., Siracusano S., Briguglio N., Baglio V., Di Blasi A., Antonucci V., Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources. Journal of Applied Electrochemistry, 2013, 43: 107–118.

    Article  Google Scholar 

  104. Hauch A., Ebbesen S.D., Jensen S.H., Mogensen M., Highly efficient high temperature electrolysis. Journal of Materials Chemistry, 2008, 18: 2331–2340.

    Article  Google Scholar 

  105. Ni M., Leung M.K.H., Leung D.Y.C., Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). International Journal of Hydrogen Energy, 2008, 33: 2337–2354.

    Article  Google Scholar 

  106. Laguna-Bercero M.A., Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. Journal of Power Sources, 2012, 203: 4–16.

    Article  Google Scholar 

  107. Sapountzi F.M., Gracia J.M., Weststrate C.J., Fredriksson H.O.A., Niemantsverdriet J.W., Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. Progress in Energy and Combustion Science, 2017, 58: 1–35.

    Article  Google Scholar 

  108. Marino C., Nucara A., Panzera M.F., Pietrafesa M., Varano V., Energetic and economic analysis of a stand-alone photovoltaic system with hydrogen storage. Renewable Energy, 2019, 142: 316–329.

    Article  Google Scholar 

  109. Ancona M.A., Bianchi M., Branchini L., Pascale A.D., Melinon F., Peretto A., Experimental investigation on a solar/hydrogen-based microgrid. Energy Procedia, 2017, 105: 343–349.

    Article  Google Scholar 

  110. Chennouf N., Settou N., Negrou B., Bouziane K., Dokkar B., Experimental study of solar hydrogen production performance by water electrolysis in the south of Algeria. Energy Procedia, 2012, 18: 1280–1288.

    Article  Google Scholar 

  111. Fallisch A., Schellhase L., Fresko J., Zedda M., Ohlmann J., Steiner M., Bosch A., Zielke L., Thiele S., Dimroth F., Smolinka T., Hydrogen concentrator demonstrator module with 19.8% solar-to-hydrogen conversion efficiency according to the higher heating value. International Journal of Hydrogen Energy, 2017, 42: 26804–26815.

    Article  Google Scholar 

  112. Sellami M.H., Loudiyi K., Electrolytes behavior during hydrogen production by solar energy. Renewable and Sustainable Energy Reviews, 2017, 70: 1331–1335.

    Article  Google Scholar 

  113. Burhan M., Shahzad M.W., Ng K.C., Hydrogen at the rooftop: Compact CPV-hydrogen system to convert sunlight to hydrogen. Applied Thermal Engineering, 2018, 132: 154–164.

    Article  Google Scholar 

  114. Ismail T.M., Ramzy K., Elnaghi B.E., Abelwhab M.N., El-Salam M.A., Using MATLAB to model and simulate a photovoltaic system to produce Hydrogen. Energy Conversion and Management, 2019, 185: 101–129.

    Article  Google Scholar 

  115. Pedrazzi S., Zini G., Tartarini P., Complete modeling and software implementation of a virtual solar hydrogen hybrid system. Energy Conversion and Management, 2010, 51: 122–129.

    Article  Google Scholar 

  116. Nouicer I., Khellaf A., Menia S., Yaiche M.R., Kabouche N., Meziane F., Solar hydrogen production using direct coupling of SO2 depolarized electrolyser to a solar photovoltaic system. International Journal of Hydrogen Energy, 2019, 44: 22408–22418.

    Article  Google Scholar 

  117. Mura P.G., Baccoli R., Innamorati R., Mariotti S., An energy autonomous house equipped with a solar PV hydrogen conversion system. Energy Procedia, 2015, 78: 1998–2003.

    Article  Google Scholar 

  118. Tebibel H., Khellaf A., Menia S., Nouicer I., Design, modelling and optimal power and hydrogen management strategy of an off grid PV system for hydrogen production using methanol electrolysis. International Journal of Hydrogen Energy, 2017, 42: 14950–14967.

    Article  Google Scholar 

  119. Bhattacharyya R., Misra A., Sandeep K.C., Photovoltaic solar energy conversion for hydrogen production by alkaline water electrolysis: Conceptual design and analysis. Energy Conversion and Management, 2017, 133: 1–13.

    Article  Google Scholar 

  120. Bicer Y., Dincer I., Development of a new solar and geothermal based combined system for hydrogen production. Solar Energy, 2016, 127: 269–284.

    Article  ADS  Google Scholar 

  121. Jafari M., Armaghan D., Mahmoudi S.M.S., Chitsaz A., Thermoeconomic analysis of a standalone solar hydrogen system with hybrid energy storage. International Journal of Hydrogen Energy, 2019, 44: 19614–19627.

    Article  Google Scholar 

  122. Xiao J.S., Guan X.H., Performance analysis of hybrid solar-hydrogen energy system. Physics Procedia, 2012, 24: 735–742.

    Article  ADS  Google Scholar 

  123. Yadav D., Banerjee R., Economic assessment of hydrogen production from solar driven high-temperature steam electrolysis process. Journal of Cleaner Production, 2018, 183: 1131–1155.

    Article  Google Scholar 

  124. Boudriesa R., Techno-economic assessment of solar hydrogen production using CPV-electrolysis systems. Energy Procedia, 2016, 93: 96–101.

    Article  Google Scholar 

  125. Ancona M.A., Bianchi M., Branchini L., Pascale A.D., Melino F., Peretto A., Rosati J., Scarponi L.B., From solar to hydrogen: Preliminary experimental investigation on a small scale facility. International Journal of Hydrogen Energy, 2017, 42: 20979–20993.

    Article  Google Scholar 

  126. Leon D.R.F., Cavaliero C.K.N., Silva E.P.D., Technical and economical design of PV system and hydrogen storage including a sodium hypochlorite plant in a small community: Case of study of Paraguay. International Journal of Hydrogen Energy, 2020, 45: 5474–5480.

    Article  Google Scholar 

  127. Badea G., Naghiu G.S., Giurca I., Aşchilean I., Megyesi E., Hydrogen production using solar energy - technical analysis. Energy Procedia, 2017, 112: 418–425.

    Article  Google Scholar 

  128. Bao J.X., Progress of solar energy hydrogen production technology. Energy and Energy Conservation, 2018, 158: 61–63.

    Google Scholar 

  129. Yilanci A., Dincer I., Ozturk H.K., A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Progress in Energy and Combustion Science, 2009, 35: 231–244.

    Article  Google Scholar 

  130. Joshi A.S., Dincer I., Reddy B.V., Solar hydrogen production: A comparative performance assessment. International Journal of Hydrogen Energy, 2011, 36(17): 11246–11257.

    Article  Google Scholar 

  131. Luzzi A., Bonadio L., McCann M., In pursuit of the future-25 years of IEA research towards the realisation of hydrogen energy systems. International Energy Agency-Hydrogen Implementing Agreement, 2004.

    Google Scholar 

  132. Siddiqui O., Dincer I., Examination of a new solar-based integrated system for desalination, electricity generation and hydrogen production. Solar Energy, 2018, 163: 224–234.

    Article  ADS  Google Scholar 

  133. Hoffmann J.E., On the outlook for solar thermal hydrogen production in South Africa. International Journal of Hydrogen Energy, 2019, 44: 629–640.

    Article  Google Scholar 

  134. Negrou B., Settou N., Chennouf N., Dokkar B., Valuation and development of the solar hydrogen production. International Journal of Hydrogen Energy, 2011, 36: 4110–4116.

    Article  Google Scholar 

  135. Kelly N.A., Gibson T.L., Solar energy concentrating reactors for hydrogen production by photoelectron chemical water splitting. International Journal of Hydrogen Energy, 2008, 33: 6420–6431.

    Article  Google Scholar 

  136. Kawai T., Sakata T., Photocatalytic hydrogen production from water by the decomposition of poly-vinylchloride, protein, algae, dead insects, and excrement. Chemistry Letters, 1981, 10(1): 81–84.

    Article  Google Scholar 

  137. Kawai T., Sakata T., Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature, 1980, 286: 474–476.

    Article  ADS  Google Scholar 

  138. Harada H., Sakata T., Ueda T., Effect of semiconductor on photocatalytic decomposition of lactic acid. Journal of the American Chemical Society, 1985, 107: 1773–1774.

    Article  Google Scholar 

  139. Kondarides D.I., Daskalaki V.M., Patsoura A., Hydrogen production by photo-induced reforming of biomass components and derivatives at ambient conditions. Catalysis Letters, 2008, 122: 26–32.

    Article  Google Scholar 

  140. Fu X.L., Long J.L., Wang X.X., et al., Photocatalytic reforming of biomass: A systematic study of hydrogen evolution from glucose solution. International Journal of Hydrogen Energy, 2008, 33: 6484–6491.

    Article  Google Scholar 

  141. Zalas M., Laniecki M., Photocatalytic hydrogen generation over lanthanides-doped titania. Solar Energy Materials and Solar Cells, 2005, 89: 287–296.

    Article  Google Scholar 

  142. Sun L.H., Tao H.C., A review of biohydrogen production. Chinese Agricultural Science Bulletin, 2014, 36: 161–167.

    Google Scholar 

  143. Benemann J., Hydrogen biotechnology: progress and prospects. Nature Biotechnology, 1996, 14: 1101–1103.

    Article  Google Scholar 

  144. Yang Y., Lu D.N., Li C., et al., Studies on the bioprocess and bioreactor used in bioconversion for acrylamide. Chemical Industry and Engineering Progress, 2002, 21(5): 299–302.

    Google Scholar 

  145. Levina D.B., Pitt L., Love M., Biohydrogen production: prospectsand limitationsto practical application. International Journal of Hydrogen Energy, 2004, 29: 173–185.

    Article  Google Scholar 

  146. Pinto F.A.L., Troshina O., Lindblad P., A brief look at three decades of research on cyanobacterial hydrogen evolution. International Journal of Hydrogen Energy, 2002, 27: 1209–1215.

    Article  Google Scholar 

  147. Guan Y.F., Deng M., Yu X.J., Zhang W., Two-stage photo-biological production of hydrogen by marine green alga Platymonas subcordiformis. Biochemical Engineering Journal, 2004, 19: 69–73.

    Article  Google Scholar 

  148. Najafpour G., Younesi H., Mohamed A.R., Effect of organic substrate on hydrogen production from synthesis gas using Rhodospirillum rubrum in batch culture. Biochemical Engineering Journal, 2004, 21: 123–130.

    Article  Google Scholar 

  149. Oh Y.K., Seol E.H., Kim M.S., Park S., Photoproduction of hydrogen fromacetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4. International Journal of Hydrogen Energy, 2004, 29: 1115–1121.

    Google Scholar 

  150. Fu X.M., Wang Y.A., Wang C.Y., Ben L.H., Guan H.S., Biological hydrogen production: strategies for sustainable development of energy, resource and environment. China Biotechnology, 2007, 27: 119–125.

    Google Scholar 

  151. Laurinavichene T.V., Fedorov A.S., Ghirardi M.L., Seibert M., Tsygankov A.A., Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived chlamydomonas reinhardtii cells. International Journal of Hydrogen Energy, 2006, 31(5): 659–672.

    Article  Google Scholar 

  152. Maness P.C., Yu J., Eckert C., Ghirardi M.L., Photobiological hydrogen production-prospects and challenges. Microbe, 2009, 4(6): 659–667.

    Google Scholar 

  153. Sayama K., Mukasa K., Abe R., et al., Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3/I shuttle redox mediator under visible light irradiation. Chemical Communications, 2001, 2416–2417.

    Google Scholar 

  154. Sayama K., Mukasa K., Abe R., et al., A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. Photobiology A: Chemistry, 2002, 148: 71–77.

    Article  Google Scholar 

  155. Abe R., Sayama K., Sugihara H., Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3/I. Journal of Physical Chemistry B, 2005, 109: 16052–16061.

    Article  Google Scholar 

  156. Kato H., Hori M., Konta R., et al., Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under Visible Light Irradiation. Chemistry Letters, 2004, 33: 1348–1349.

    Article  Google Scholar 

  157. Abe R., Takata T., Sugihara H., et al., Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3/I shuttle redox mediator. Chemical Communications, 2005, 30: 3829–3831.

    Article  Google Scholar 

  158. Na Y., Wang M., Pan J.X., et al., Visible light-driven electron transfer and hydrogen generation catalyzed by bioinspired [2Fe2S] complexes. Inorganic Chemistry, 2008, 47: 2805–2810.

    Article  Google Scholar 

  159. Na Y., Pan J.X., Wang M., et al., A computational study of O-O bond formation catalyzed by mono- and bis-Mn(IV) corrole complexes. Inorganic Chemistry, 2007, 46: 3813–3815.

    Article  Google Scholar 

  160. Fihri A., Artero V., Razavet M., et al., Cobaloxime-based photocatalytic devices for hydrogen production. Angewandte Chemie International Edition, 2008, 47: 564–567.

    Article  Google Scholar 

  161. Zong X., Na Y., Wen F., et al., Visible light driven H2 production in molecular systems employing colloidal MoS2 nanoparticles as catalyst. Chemical Communications, 2009, 30: 4536–4538.

    Article  Google Scholar 

  162. Dhanalakshmi K.B., Latha S., Anandan S., et al., Dye sensitized hydrogen evolution from water. International Journal of Hydrogen Energy, 2001, 26: 669–674.

    Article  Google Scholar 

  163. Bae E.Y., Choi W.Y., Park J.W., et al., Effects of surface anchoring groups (carboxylate vs phosphonate) in ruthenium-complex-sensitized TiO2 on visible light reactivity in aqueous suspensions. Journal of Physical Chemistry B, 2004, 108: 14093–14101.

    Article  Google Scholar 

  164. Bae E., Choi W., Effect of the anchoring group (carboxylate vs phosphonate) in Ru-complex-sensitized TiO2 on hydrogen production under visible light. Journal of Physical Chemistry B, 2006, 110: 14792–14799.

    Article  Google Scholar 

  165. Abe R., Hara K., Sayama K., et al., Steady hydrogen evolution from water on Eosin Y-fixed TiO2 photocatalyst using a silane-coupling reagent under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 137: 63–69.

    Article  Google Scholar 

  166. Jin Z.L., Zhang X.J., Li Y.X., et al., 5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catalysis Communications, 2007, 8: 1267–1273.

    Article  Google Scholar 

  167. Li Q.Y., Chen L.A., Lu G.X., Visible-light-induced photocatalytic hydrogen generation on dye-sensitized multiwalled carbon nanotube/Pt catalyst. Journal of Physical Chemistry C, 2007, 111: 11494–11499.

    Article  Google Scholar 

  168. Li Y.X., Xie C.F., Peng S.Q., et al., Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution. Journal of Molecular Catalysis A: Chemical, 2008, 282: 117–123.

    Article  Google Scholar 

  169. Wang Y., Qu Y.H., Application of frequency conversion technology in wind turbines. Power Supply Technologies and Applications, 2014, 3: 226–228.

    Google Scholar 

  170. Apostolou D., Enevoldsen P., The past, present and potential of hydrogen as a multifunctional storage application for wind power. Renewable and Sustainable Energy Reviews, 2019, 112: 917–929.

    Article  Google Scholar 

  171. Cai G.W., Kong L.G., Xue Y., Sun B.Z., Over review of research on wind power coupled with hydrogen production technology. Automation of Electric Power System, 2014, 38: 127–135.

    Google Scholar 

  172. Alavi O., Viki A.H., Bina M.T., Akbari M., Reliability assessment of a stand-alone wind-hydrogen energy conversion system based on thermal analysis. International Journal of Hydrogen Energy, 2017, 42: 14968–14979.

    Article  Google Scholar 

  173. Deep interpretation of wind power hydrogen production, http://www.sohu.com/a/108496541_257552.

  174. Sun H.X., Li Z., Chen A.B., Zhang Y., Mei C.X., Current status and development trend of hydrogen production technology by wind power. Transactions of China Electrotechnical Society, 2019, 34(19): 4071–4083.

    Google Scholar 

  175. Yan Z.Y., Gu W.D., Research on integrated system of non-grid-connected wind power and water electrolytic hydrogen production. IEEE World Non-Grid-Connected Wind Power and Energy Conference, 2010, Nanjing, China.

    Google Scholar 

  176. Beccali M., Brunone S., Finocchiaro P., Galletto J.M., Method for size optimisation of large wind-hydrogen systems with high penetration on power grids. Applied Energy, 2013, 102: 534–544.

    Article  Google Scholar 

  177. Clúa J.G.G., Mantz R.J., Battista H.D., Optimal sizing of a grid-assisted wind-hydrogen system. Energy Conversion and Management, 2018, 166: 402–408.

    Article  Google Scholar 

  178. Bechrakis D.A., McKeogh E.J., Gallagher P.D., Simulation and operational assessment for a small autonomous wind-hydrogen energy system. Energy Conversion and Management, 2006, 47: 46–59.

    Article  Google Scholar 

  179. Ishaq H., Dincer I., Naterer G.F., Performance investigation of an integrated wind energy system for co-generation of power and hydrogen. International Journal of Hydrogen Energy, 2018, 43: 9153–9164.

    Article  Google Scholar 

  180. Siyal S.H., Mentis D., Mortberg U., Samo S.R., Howells M., A preliminary assessment of wind generated hydrogen production potential to reduce the gasoline fuel used in road transport sector of Sweden. International Journal of Hydrogen Energy, 2015, 40: 6501–6511.

    Article  Google Scholar 

  181. Valdés R., Lucio J.H., Rodríguez L.R., Operational simulation of wind power plants for electrolytic hydrogen production connected to a distributed electricity generation grid. Renewable Energy, 2013, 53: 249–257.

    Article  Google Scholar 

  182. Qiu Y.B., Li Q., Pan Y.R., Yang H.Q., Chen W.R., A scenario generation method based on the mixture vine copula and its application in the power system with wind/hydrogen production. International Journal of Hydrogen Energy, 2019, 44: 5162–5170.

    Article  Google Scholar 

  183. Kim M., Kim J.Y., An integrated decision support model for design and operation of a wind-based hydrogen supply system. International Journal of Hydrogen Energy, 2017, 42: 3899–3915.

    Article  Google Scholar 

  184. Khan M.J., Iqbal M.T., Analysis of a small wind-hydrogen stand-alone hybrid energy system. Applied Energy, 2009, 86: 2429–2442.

    Article  Google Scholar 

  185. Ashrafi Z.N., Ghasemian M., Shahrestani M.I., Khodabandeh E., Sedaghat A., Evaluation of hydrogen production from harvesting wind energy at high altitudes in Iran by three extrapolating Weibull methods. International Journal of Hydrogen Energy, 2018, 43: 3110–3132.

    Article  Google Scholar 

  186. Sarrias-Mena R., Fern L.M., Ramirez E.Z., Garcı-Vazquez C.A., Jurado F., Electrolyzer models for hydrogen production from wind energy systems. International Journal of Hydrogen Energy, 2015, 40: 2927–2938.

    Article  Google Scholar 

  187. Alavi O., Najafi P., Viki A.H., Influence of noise of wind speed data on a wind-hydrogen system. International Journal of Hydrogen Energy, 2016, 41: 22751–22759.

    Article  Google Scholar 

  188. Mantz R.J., Battista H.D., Hydrogen production from idle generation capacity of wind turbines. International Journal of Hydrogen Energy, 2008, 33: 4291–4300.

    Article  Google Scholar 

  189. Zhou T., Francois B., Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system. International Journal of Hydrogen Energy, 2009, 34: 21–30.

    Article  Google Scholar 

  190. Clu’a J.G.G., Battista H.D., Mantz R.J., Control of a grid-assisted wind-powered hydrogen production system. International Journal of Hydrogen Energy, 2010, 35: 5786–5792.

    Article  Google Scholar 

  191. Muyeen S.M., Takahashi R., Tamura J., Electrolyzer switching strategy for hydrogen generation from variable speed wind generator. Electric Power Systems Research, 2011, 81: 1171–1179.

    Article  Google Scholar 

  192. Muyeen S.M., Takahashi R., Murata T., Tamura J., Ali M.H., Application of STATCOM/BESS for wind power smoothening and hydrogen generation. Electric Power Systems Research, 2009, 79: 365–373.

    Article  Google Scholar 

  193. Fang R.M., Liang Y., Control strategy of electrolyzer in a wind-hydrogen system considering the constraints of switching times. International Journal of Hydrogen Energy, 2019, 44: 25104–25111.

    Article  Google Scholar 

  194. Valverde-Isorna L., Ali D., Hogg D., Abdel-Wahab M., Modelling the performance of wind-hydrogen energy systems: Case study the Hydrogen Office in Scotland/UK. Renewable and Sustainable Energy Reviews, 2016, 53: 1313–1332.

    Article  Google Scholar 

  195. Wu Y.N., Xu C.B., Zhang B.Y., Tao Y., Li X.Y., Chu H., Liu F.T., Sustainability performance assessment of wind power coupling hydrogen storage projects using a hybrid evaluation technique based on interval type-2 fuzzy set. Energy, 2019, 179: 1176–1190.

    Article  Google Scholar 

  196. Hacatoglu K., Dincer I., Rosen M.A., Sustainability of a wind-hydrogen energy system: Assessment using a novel index and comparison to a conventional gas-fired system. International Journal of Hydrogen Energy, 2016, 41: 8376–8385.

    Article  Google Scholar 

  197. Pino F.J., Valverde L., Rosa F., Influence of wind turbine power curve and electrolyzer operating temperature on hydrogen production in wind-hydrogen systems. Journal of Power Sources, 2011, 196: 4418–4426.

    Article  ADS  Google Scholar 

  198. Fakehi A.H., Ahmadi S., Mirghaed M.R., Optimization of operating parameters in a hybrid wind-hydrogen system using energy and exergy analysis: Modeling and case study. Energy Conversion and Management, 2015, 106: 1318–1326.

    Article  Google Scholar 

  199. Raju M., Khaitan S.K., System simulation of compressed hydrogen storage based residential wind hybrid power systems. Journal of Power Sources, 2012, 210: 303–320.

    Article  ADS  Google Scholar 

  200. Martin K.B, Grasman S.E., An assessment of wind-hydrogen systems for light duty vehicles. International Journal of Hydrogen Energy, 2009, 34: 6581–6588.

    Article  Google Scholar 

  201. Gu W.D., Yan Z.Y., Research on non-grid-connected wind power/water-electrolytic hydrogen production system. International Journal of Hydrogen Energy, 2012, 37: 737–740.

    Article  Google Scholar 

  202. Genc M.S., Celik M., Karasu I., A review on wind energy and wind-hydrogen production in Turkey: A case study of hydrogen production via electrolysis system supplied by wind energy conversion system in Central Anatolian Turkey. Renewable and Sustainable Energy Reviews, 2012, 16: 6631–6646.

    Article  Google Scholar 

  203. Nematollahi O., Alamdari P., Jahangiri M., Sedaghat A., Alemrajabi A.A., A techno-economical assessment of solar/wind resources and hydrogen production: A case study with GIS maps. Energy, 2019, 175: 914–930.

    Article  Google Scholar 

  204. Aiche-Hamane L., Belhamel M., Benyoucef B., Hamane M., Feasibility study of hydrogen production from wind power in the region of Ghardaia. International Journal of Hydrogen Energy, 2009, 34: 4947–4952.

    Article  Google Scholar 

  205. Benjamin K., Sovacool, Richard F., Hirsh. Island wind-hydrogen energy: A significant potential US resource. Renewable Energy, 2008, 33: 1928–1935.

    Article  Google Scholar 

  206. Rodriguez C.R., Riso M., Yob G.J., Ottogalli R., Cruz R.S., Aisa S., Jeandrevin G., Leiva E.P.M., Analysis of the potential for hydrogen production in the province of Cordoba, Argentina, from wind resources. International Journal of Hydrogen Energy, 2010, 35: 5952–5956.

    Article  Google Scholar 

  207. Alavi O., Mostafaeipour A., Qolipour M., Analysis of hydrogen production from wind energy in the southeast of Iran. International Journal of Hydrogen Energy, 2016, 41: 15158–15171.

    Article  Google Scholar 

  208. Mostafaeipour A., Khayyami M., Sedaghat A., Mohammadi K., Shamshirband S., Sehati M.A., Gorakifard E., Evaluating the wind energy potential for hydrogen production: A case study. International Journal of Hydrogen Energy, 2016, 41: 6200–6210.

    Article  Google Scholar 

  209. Greiner C.J., Korpås M., Holen A.T., ANorwegian case study on the production of hydrogen from wind power. International Journal of Hydrogen Energy, 2007, 32: 1500–1507.

    Article  Google Scholar 

  210. Olateju B., Kumar A., Hydrogen production from wind energy in Western Canada for upgrading bitumen from oil sands. Energy, 2011, 36: 6326–6339.

    Article  Google Scholar 

  211. Gokcek M., Kale C., Techno-economical evaluation of a hydrogen refuelling station powered by Wind-PV hybrid power system: A case study for Izmir-Cesme. International Journal of Hydrogen Energy, 2018, 43: 10615–10625.

    Article  Google Scholar 

  212. Ahmadi S., Mirghaed M.R., Roshandel R., Performance of a standalone wind-hydrogen power system for regions with seasonal wind profile: A case study in Khaf region. Sustainable Energy Technologies and Assessments, 2014, 7: 265–278.

    Article  Google Scholar 

  213. Babarit A., Gilloteaux J.C., Clodic G., Duchet M., Simoneau A., Platzer M.F., Techno-economic feasibility of fleets of far offshore hydrogen-producing wind energy converters. International Journal of Hydrogen Energy, 2018, 43: 7266–7289.

    Article  Google Scholar 

  214. Chardonnet C., deVos L., Genoese F., Roig G., Giordano V., Rapoport S., et al., Study on early business cases for H2 in energy storage and more broadly power to H2 applications. Final report. A report by Tractebel and Hinicio. Funded by Fuel Cells and Hydrogen Joint Undertaking, 2017.

    Google Scholar 

  215. Fazelpour F., Markarian E., Soltani N., Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran. Renewable Energy, 2017, 109: 646–667.

    Article  Google Scholar 

  216. Mostafaeipour A., Rezaei M., Moftakharzadeh A., Qolipour M., Salimi M., Evaluation of hydrogen production by wind energy for agricultural and industrial sectors. International Journal of Hydrogen Energy, 2019, 44: 7983–7995.

    Article  Google Scholar 

  217. Mathur J., Agarwal N., Swaroop R., Shah N., Economics of producing hydrogen as transportation fuel using offshore wind energy systems. Energy Policy, 2008, 36: 1212–1222.

    Article  Google Scholar 

  218. Douak M., Settou N., Estimation of hydrogen production using wind energy in Algeria. Energy Procedia, 2015, 74: 981–990.

    Article  Google Scholar 

  219. Gokcek M., Hydrogen generation from small-scale wind-powered electrolysis system in different power matching modes. International Journal of Hydrogen Energy, 2010, 35: 10050–10059.

    Article  Google Scholar 

  220. Ayodele T.R., Munda J.L., Potential and economic viability of green hydrogen production by water electrolysis using wind energy resources in South Africa. International Journal of Hydrogen Energy, 2019, 44: 17669–17687.

    Article  Google Scholar 

  221. Olateju B., Kumar A., Secanell M., A techno-economic assessment of large scale wind-hydrogen production with energy storage in Western Canada. International Journal of Hydrogen Energy, 2016, 41: 8755–8776.

    Article  Google Scholar 

  222. Olateju B., Monds J., Kumar A., Large scale hydrogen production from wind energy for the upgrading of bitumen from oil sands. Applied Energy, 2014, 118: 48–56.

    Article  Google Scholar 

  223. Zolezzi J.M., Garay A., Reveco M., Large scale hydrogen production from wind energy in the Magallanes area for consumption in the central zone of Chile. Journal of Power Sources, 2010, 195: 8236–8243.

    Article  ADS  Google Scholar 

  224. Menanteau P., Quemere M.M., LeDuigou A., LeBastar S., An economic analysis of the production of hydrogen from wind-generated electricity for use in transport applications. Energy Policy, 2011, 39: 2957–2965.

    Article  Google Scholar 

  225. Sigal A., Cioccale M., Rodríguez C.R., Leiva E.P.M., Study of the natural resource and economic feasibility of the production and delivery of wind hydrogen in the province of Cordoba, Argentina. International Journal of Hydrogen Energy, 2015, 40: 4413–4425.

    Article  Google Scholar 

  226. Aguado M., Ayerbe E., Azca’rate C., Blanco R., Garde R., Mallor F., Rivas D.M., Economical assessment of a wind-hydrogen energy system using WindHyGen® software. International Journal of Hydrogen Energy, 2009, 34: 2845–2854.

    Article  Google Scholar 

  227. Hou P., Enevoldsen P., Eichman J., Hu W.H., Jacobson M.Z., Chen Z., Optimizing investments in coupled offshore wind-electrolytic hydrogen storage systems in Denmark. Journal of Power Sources, 2017, 359: 186–197.

    Article  ADS  Google Scholar 

  228. Mohsin M., Rasheed A.K., Saidur R., Economic viability and production capacity of wind generated renewable hydrogen. International Journal of Hydrogen Energy, 2018, 43: 2621–2630.

    Article  Google Scholar 

  229. Shao Z.F., Fang S.J., Zhang C.M., Wind farm combined with hydrogen production system evaluation. Energy Procedia, 2012, 14: 160–166.

    Article  Google Scholar 

  230. Rezaei M., Salimi M., Momeni M., Mostafaeipour A., Investigation of the socio-economic feasibility of installing wind turbines to produce hydrogen: Case study. International Journal of Hydrogen Energy, 2018, 43: 23135–23147.

    Article  Google Scholar 

  231. Fang R.M., Life cycle cost assessment of wind power-hydrogen coupled integrated energy system. International Journal of Hydrogen Energy, 2019, 44: 29399–29408.

    Article  Google Scholar 

  232. Ghandehariun S., Kumar A., Life cycle assessment of wind-based hydrogen production in Western Canada. International Journal of Hydrogen Energy, 2016, 41: 9696–9704.

    Article  Google Scholar 

  233. Chao Y.Q., Wang X.L., Zuo Y., et al., A novel catalyst-free process for producing hydrogen and carboxylate from biomass-derived alcohols. International Journal of Hydrogen Energy, 2014, 39: 13136–13141.

    Article  Google Scholar 

  234. Hossain M.Z., Charpentier P.A., Hydrogen production by gasification of biomass and opportunity fuels. Compendium of Hydrogen Energy, 2015, 137–175.

    Chapter  Google Scholar 

  235. Yang Q., Su W., Yao L., Sun Y., Progress of biomass hydrogen production technology. New Chemical Material, 2018, 46: 247–258.

    Google Scholar 

  236. Iwasaki W., A consideration of the economic efficiency of hydrogen production from biomass. International Journal of Hydrogen Energy, 2003, 28: 939–944.

    Article  MathSciNet  Google Scholar 

  237. Suprianto T., Winarto, Wijayanti W., Wardana I.N.G., Synergistic effect of curcumin and activated carbon catalyst enhancing hydrogen production from biomass pyrolysis. International Journal of Hydrogen Energy, 2021, 46(10): 7147–7164.

    Article  Google Scholar 

  238. Ma Z., Zhang S.P., Xie D.Y., Yan Y.J., A novel integrated process for hydrogen production from biomass. International Journal of Hydrogen Energy, 2014, 39: 1274–1279.

    Article  Google Scholar 

  239. Alvarez J., Kumagai S., Wu C.F., Yoshioka T., Bilbao J., Olazar M., Williams P.T., Hydrogen production from biomass and plastic mixtures by pyrolysis-gasification. International Journal of Hydrogen Energy, 2014, 39: 10883–10891.

    Article  Google Scholar 

  240. Zhao B.F., Zhang X.D., Sun L., Meng G.F., Chen L., Yi X.L., Hydrogen production from biomass combining pyrolysis and the secondary decomposition. International Journal of Hydrogen Energy, 2010, 35: 2606–2611.

    Article  Google Scholar 

  241. Luo S.Y., Fu J., Zhou Y.M., Yi C.J., The production of hydrogen-rich gas by catalytic pyrolysis of biomass using waste heat from blast-furnace slag. Renewable Energy, 2017, 101: 1030–1036.

    Article  Google Scholar 

  242. Blanquet E., Nahil M.A., Williams P.T., Enhanced hydrogen-rich gas production from waste biomass using pyrolysis with non-thermal plasma-catalysis. Catalysis Today, 2019, 337: 216–224.

    Article  Google Scholar 

  243. Liu S.M., Zhu J.L., Chen M.Q., Xin W.P., Yang Z.L., Kong L.H., Hydrogen production via catalytic pyrolysis of biomass in a two-stage fixed bed reactor system. International Journal of Hydrogen Energy, 2014, 39: 13128–13135.

    Article  Google Scholar 

  244. Ye M.J., Tao Y.W., Jin F.Z., Ling H.J., Wu C.F., Williams P.T., Huang J., Enhancing hydrogen production from the pyrolysis-gasification of biomass by size-confined Ni catalysts on acidic MCM-41 supports. Catalysis Today, 2018, 307: 154–161.

    Article  Google Scholar 

  245. Bridgwater A.V., Principles and practice of biomass fast pyrolysis processes for liquids. Journal of Analytical and Applied Pyrolysis, 1999, 51: 3–22.

    Article  Google Scholar 

  246. Bair K.A.M., Czernik S., French R., Parent Y., Ritland M., Chornet E., Fluidizable catalysts for producing hydrogen by steam reforming biomass pyrolysis liquids, Proceedings of the 2002 U.S. DOE Hydrogen Program Review, NREL/CP-610-32405, National Renewable Energy Laboratory, 2002.

    Google Scholar 

  247. Bair K.A.M., Czernik S., French R., Chornet E., Fluidizable catalysts for hydrogen production from biomass pyrolysis/steam reforming, FY 2003 Progress Report, National Renewable Energy Laboratory, 2003.

    Google Scholar 

  248. Yeboah Y., Bota K., Day D., McGee D., Realff M., Evans R., Chornet E., Czernik S., Feik C., French R., Philips S., Patrick J., Hydrogen from biomass for urban transportation. Hydrogen, Fuel Cells and Infrastructure Technologies Program Review Meeting, Berkeley, CA, 2003.

    Google Scholar 

  249. Duman G., Yanik J., Two-step steam pyrolysis of biomass for hydrogen production. International Journal of Hydrogen Energy, 2017, 42: 17000–17008.

    Article  Google Scholar 

  250. Ji P.J., Feng W., Chen B.H., Production of ultrapure hydrogen from biomass gasification with air. Chemical Engineering Science, 2009, 64: 582–592.

    Article  ADS  Google Scholar 

  251. Bhattachary A., Bhattacharya A., Datta A., Modeling of hydrogen production process from biomass using oxygen blown gasification. International Journal of Hydrogen Energy, 2012, 37: 18782–18790.

    Article  Google Scholar 

  252. Akubo K., Nahil M.A., Williams P.T., Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas. Journal of the Energy Institute, 2019, 92: 1987–1996.

    Article  Google Scholar 

  253. Prasertcharoensuk P., Bull S.J., Phan A.N., Gasification of waste biomass for hydrogen production: Effects of pyrolysis parameters. Renewable Energy, 2019, 143: 112–120.

    Article  Google Scholar 

  254. Emerson S.C., Zhu T.L., Davis T.D., Peles A., She Y., Willigan R.R., Vanderspurt T.H., Swanson M., Laudal D.A., Liquid phase reforming of woody biomass to hydrogen. International Journal of Hydrogen Energy, 2014, 39: 137–149.

    Article  Google Scholar 

  255. Mahishi M.R., Goswami D.Y., Thermodynamic optimization of biomass gasifier for hydrogen production. International Journal of Hydrogen Energy, 2007, 32: 3831–3840.

    Article  Google Scholar 

  256. Gao N.B., Li A.M., Quan C., A novel reforming method for hydrogen production from biomass steam gasification. Bioresource Technology, 2009, 100: 4271–4277.

    Article  Google Scholar 

  257. Gao N.B., Li A.M., Quan C., Qu Y., Mao L.Y., Characteristics of hydrogen-rich gas production of biomass gasification with porous ceramic reforming. International Journal of Hydrogen Energy, 2012, 37: 9610–9618.

    Article  Google Scholar 

  258. Moneti M., Carlo A.D., Bocci E., Foscolo P.U., Villarini M., Carlini M., Influence of the main gasifier parameters on a real system for hydrogen production from biomass. International Journal of Hydrogen Energy, 2016, 41: 11965–11973.

    Article  Google Scholar 

  259. Deniz I., Vardar-Sukan F., Yüksel M., Saglam M., Ballice L., Yesil-Celiktas O., Hydrogen production from marine biomass by hydrothermal gasification. Energy Conversion and Management, 2015, 96: 124–130.

    Article  Google Scholar 

  260. Yaghoubi E., Xiong Q.G., Doranehgard M.H., Yeganeh M.M., Shahriari G., Bidabadi M., The effect of different operational parameters on hydrogen rich syngas production from biomass gasification in a dual fluidized bed gasifier. Chemical Engineering & Processing Process Intensification, 2018, 126: 210–221.

    Article  Google Scholar 

  261. Wang L.Q., Dun Y.H., Xiang X.N., Jiao Z.J., Zhang T.Q., Thermodynamics research on hydrogen production from biomass and coal co-gasification with catalyst. International Journal of Hydrogen Energy, 2011, 36: 11676–11683.

    Article  Google Scholar 

  262. Aydin E.S., Yucel O., Sadikoglu H., Numerical and experimental investigation of hydrogen-rich syngas production via biomass gasification. International Journal of Hydrogen Energy, 2018, 43: 1105–1115.

    Article  Google Scholar 

  263. Yoon S.J., Choi Y.C., Lee J.G., Hydrogen production from biomass tar by catalytic steam reforming. Energy Conversion and Management, 2010, 51: 42–47.

    Article  Google Scholar 

  264. Azadi P., Foroughi H., Dai T.S., Azadi F., Farnood R., An integrated hydrolysis-reforming process for the production of hydrogen from wet biomass feed stocks. Fuel, 2014, 117: 1223–1230.

    Article  Google Scholar 

  265. Díaz-Rey M.R., Cortés-Reyes M., Herrera C., Larrubia M.A., Amadeo N., Laborde M., Alemany L.J., Hydrogen-rich gas production from algae-biomass by low temperature catalytic gasification. Catalysis Today, 2015, 257: 177–184.

    Article  Google Scholar 

  266. Norouzi O., Safari F., Jafarian S., Tavasoli A., Karimi A., Hydrothermal gasification performance of Enteromorpha intestinalis as an algal biomass for hydrogen-rich gas production using Ru promoted Fe-Ni/c-Al2O3 nanocatalysts. Energy Conversion and Management, 2017, 141: 63–71.

    Article  Google Scholar 

  267. Lu Y.J., Jin H., Zhang R., Evaluation of stability and catalytic activity of Ni catalysts for hydrogen production by biomass gasification in supercritical water. Carbon Resources Conversion, 2019, 2: 95–101.

    Article  Google Scholar 

  268. Adamu S., Xiong Q.G., Bakare I.A., Hossain M.M., Ni/CeeAl2O3 for optimum hydrogen production from biomass/tar model compounds: Role of support type and ceria modification on desorption kinetics. International Journal of Hydrogen Energy, 2019, 44: 15811–15822.

    Article  Google Scholar 

  269. Hashaikeh R., Fang Z., Butler I.S., Kozinski J.A., Sequential hydrothermal gasification of biomass to hydrogen. Proceedings of the Combustion Institute, 2005, 30: 2231–2237.

    Article  Google Scholar 

  270. Duman G., Uddin M.A., Yanik J., Hydrogen production from algal biomass via steam gasification. Bioresource Technology, 2014, 166: 24–30.

    Article  Google Scholar 

  271. Duman G., Watanabe T., Uddin M.A., Yanik J., Steam gasification of safflower seed cake and catalytic tar decomposition over ceria modified iron oxide catalysts. Fuel Processing Technology, 2014, 126: 276–283.

    Article  Google Scholar 

  272. Lang C., Sécordel X., Kiennemann A., Courson C., Water gas shift catalysts for hydrogen production from biomass steam gasification. Fuel Processing Technology, 2017, 156: 246–252.

    Article  Google Scholar 

  273. Irmak S., Meryemoglu B., Ozsel B.K., Hasanoglu A., Erbatur O., Improving activity of Pt supported metal catalysts by changing reduction method of Pt precursor for hydrogen production from biomass. International Journal of Hydrogen Energy, 2015, 40: 14826–14832.

    Article  Google Scholar 

  274. Hu Q., Shen Y., Chew J.W., Ge T.S., Wang C.H., Chemical looping gasification of biomass with Fe2O3/CaO as the oxygen carrier for hydrogen-enriched syngas production. Chemical Engineering Journal, 2020, 379: 122346.

    Article  Google Scholar 

  275. Huang B.S., Chen H.Y., Chuang K.H., Yang R.X., Wey M.Y., Hydrogen production by biomass gasification in a fluidized bed reactor promoted by a Fe/CaO catalyst. International Journal of Hydrogen Energy, 2012, 37: 6511–6518.

    Article  Google Scholar 

  276. Zhang B., Zhang L., Yang Z.Q., Yan Y.F., Pu G., Guo M.V., Hydrogen-rich gas production from wet biomass steam gasification with CaO/MgO. International Journal of Hydrogen Energy, 2015, 40: 8816–8823.

    Article  Google Scholar 

  277. Doranehgard M.H., Samadyar H., Mesbah M., Haratipour P., Samiezade S., High-purity hydrogen production with in situ CO2 capture based on biomass gasification. Fuel, 2017, 202: 29–35.

    Article  Google Scholar 

  278. Zhou L., Yang Z.Y., Tang A.J., Huang H.S., Wei D.J., Yu E.L., Lu W., Steam-gasification of biomass with CaO as catalyst for hydrogen-rich syngas production. Journal of the Energy Institute, 2019, 92: 1641–1646.

    Article  Google Scholar 

  279. Zhang Z.H., Ou Z.L., Qin C.L., Ran J.Y., Wu C.F., Roles of alkali/alkaline earth metals in steam reforming of biomass tar for hydrogen production over perovskite supported Ni catalysts. Fuel, 2019, 257: 116032.

    Article  Google Scholar 

  280. Yao D.D., Hu Q., Wang D.Q., Yang H.P., Wu C.F., Wang X.H., Chen H.P., Hydrogen production from biomass gasification using biochar as a catalyst/support. Bioresource Technology, 2016, 216: 159–164.

    Article  Google Scholar 

  281. Zhang S.P., Chen Z.Q., Cai Q.J., Ding D., The integrated process for hydrogen production from biomass: Study on the catalytic conversion behavior of pyrolytic vapor in gas-solid simultaneous gasification process. International Journal of Hydrogen Energy, 2016, 41: 6653–6661.

    Article  Google Scholar 

  282. Jin K., Ji D.X., Xie Q.L., Nie Y., Yu F.W., Ji J.B., Hydrogen production from steam gasification of tableted biomass in molten eutectic carbonates. International Journal of Hydrogen Energy, 2019, 44: 22919–22925.

    Article  Google Scholar 

  283. Chang A.C.C., Chang H.F., Lin F.J., Lin K.H., Chen C.H., Biomass gasification for hydrogen production. International Journal of Hydrogen Energy, 2011, 36: 14252–14260.

    Article  Google Scholar 

  284. Karmakar M.K., Datta A.B., Generation of hydrogen rich gas through fluidized bed gasification of biomass. Bioresource Technology, 2011, 102: 1907–1913.

    Article  Google Scholar 

  285. Fremaux S., Beheshti S.M., Ghassemi H., Shahsavan-Markadeh R., An experimental study on hydrogen-rich gas production via steam gasification of biomass in a research-scale fluidized bed. Energy Conversion and Management, 2015, 91: 427–432.

    Article  Google Scholar 

  286. Radmanesh R., Chaouki J., Guy C., Biomass gasification in a bubbling fluidized bed reactor: experiments and modeling. Environmental and Energy Engineering, 2006, 52: 4258–4272.

    Google Scholar 

  287. Iliuta I., Leclerc A., Larachi F., Allothermal steam gasification of biomass in cyclic multi-compartment bubbling fluidized-bed gasifier/combustor-New reactor concept. Bioresource Technology, 2010, 101: 3194–3208.

    Article  Google Scholar 

  288. Kim Y.D., Yang C.W., Kim B.J., Kim K.S., Lee J.W., Moon J.H., Yang W., Yu T.U., Lee U.D., Air-blown gasification of woody biomass in a bubbling fluidized bed gasifier. Applied Energy, 2013, 112: 414–420.

    Article  Google Scholar 

  289. Marcantonio V., Falco M.D., Capocelli M., Bocci E., Colantoni A., Villarini M., Process analysis of hydrogen production from biomass gasification in fluidized bed reactor with different separation systems. International Journal of Hydrogen Energy, 2019, 44: 10350–10360.

    Article  Google Scholar 

  290. Li X.T., Grace J.R., Lim C.J., Watkinson A.P., Chen H.P., Kim J.R., Biomass gasification in a circulating fluidized bed. Biomass and Bioenergy, 2004, 26: 171–193.

    Article  Google Scholar 

  291. Corella J., Sanz A., Modeling circulating fluidized bed biomass gasifiers. A pseudo-rigorous model for stationary state. Fuel Processing Technology, 2005, 86: 1021–1053.

    Article  Google Scholar 

  292. Xiao X.B., Le D.D., Morishita K., Zhang S.Y., Li L.Y., Takarad T., Multi-stage biomass gasification in Internally Circulating Fluidized-bed Gasifier (ICFG): Test operation of animal-waste-derived biomass and parametric investigation at low temperature. Fuel Processing Technology, 2010, 91: 895–902.

    Article  Google Scholar 

  293. Barisano D., Canneto G., Nanna F., Alvino E., Pinto G., Villone A., Carnevale M., Valerio V., Battafarano A., Braccio G., Steam/oxygen biomass gasification at pilot scale in an internally circulating bubbling fluidized bed reactor. Fuel Processing Technology, 2016, 141: 74–81.

    Article  Google Scholar 

  294. Murakami T., Xu G.W., Suda T., Matsuzawa Y., Tani H., Fujimori T., Some process fundamentals of biomass gasification in dual fluidized bed. Fuel, 2007, 86: 244–255.

    Article  Google Scholar 

  295. Matsuoka K., Kuramoto K., Murakami T., Suzuki Y., Steam Gasification of Woody Biomass in a Circulating Dual Bubbling Fluidized Bed System. Energy & Fuels, 2008, 22: 1980–1985.

    Article  Google Scholar 

  296. Aigner I., Pfeifer C., Hofbauer H., Co-gasification of coal and wood in a dual fluidized bed gasifier. Fuel, 2011, 90: 2404–2412.

    Article  Google Scholar 

  297. Pfeifer C., Koppatz S., Hofbauer H., Steam gasification of various feed stocks at a dual fluidised bed gasifier: Impacts of operation conditions and bed materials. Biomass Conversion and Biorefinery, 2011, 1: 39–53.

    Article  Google Scholar 

  298. Kraussler M., Binder M., Schindler P., Hofbaue H., Hydrogen production within a polygeneration concept based on dual fluidized bed biomass steam gasification. Biomass and Bioenergy, 2018, 111: 320–329.

    Article  Google Scholar 

  299. Henrich E., Weirich F., Pressurized entrained flow gasifiers for biomass. Environmental Engineering Science, 2004, 21(1): 53–64.

    Article  Google Scholar 

  300. Liu H., Kaneko M., Luo C., Kato S., Kojima T., Effect of pyrolysis time on the gasification reactivity of char with CO2 at elevated temperatures. Fuel, 2004, 83(7): 1055–1061.

    Article  Google Scholar 

  301. Makaruk A., Miltner M., Harasek M., Membrane gas permeation in the upgrading of renewable hydrogen from biomass steam gasification gases. Applied Thermal Engineering, 2012, 43: 134–140.

    Article  Google Scholar 

  302. Ghasemzadeh K., Khosravi M., Tilebon S.M.S., Aghaeinejad-Meybodi A., Basile A., Theoretical evaluation of Pd-Ag membrane reactor performance during biomass steam gasification for hydrogen production using CFD method. International Journal of Hydrogen Energy, 2018, 43: 11719–11730.

    Article  Google Scholar 

  303. Sime R., Kuehni J., D’Souza L., Elizondo E, Biollaz S., The redox process for producing hydrogen from woody biomass. International Journal of Hydrogen Energy, 2003, 28: 491–498.

    Article  Google Scholar 

  304. Xiao Y.H., Xu S.P., Song Y.B., Shan Y.Y., Wang C., Wang G.Y., Biomass steam gasification for hydrogen-rich gas production in a decoupled dual loop gasification system. Fuel Processing Technology, 2017, 165: 54–61.

    Article  Google Scholar 

  305. Kuo P.C., Chen J.R., Wu W., Chang J.S., Hydrogen production from biomass using iron-based chemical looping technology: Validation, optimization, and efficiency. Chemical Engineering Journal, 2018, 337: 405–415.

    Article  Google Scholar 

  306. Pallozzi V., Carlo A.D., Bocci E., Villarini M., Foscolo P.U., Carlini M., Performance evaluation at different process parameters of an innovative prototype of biomass gasification system aimed to hydrogen production. Energy Conversion and Management, 2016, 130: 34–43.

    Article  Google Scholar 

  307. Abuadala A., Dincer I., Efficiency evaluation of dry hydrogen production from biomass gasification. Thermochimica Acta, 2010, 507(08): 127–134.

    Article  Google Scholar 

  308. Auadala A., Dincer I., Naterer G.F., Exergy analysis of hydrogen production from biomass gasification. International Journal of Hydrogen Energy, 2010, 35: 4981–4990.

    Article  Google Scholar 

  309. Sheth P.N., Babu B.V., Production of hydrogen energy through biomass (waste wood) gasification. International Journal of Hydrogen Energy, 2010, 35: 10803–10810.

    Article  Google Scholar 

  310. Cohce M.K., Dincer I., Rosen M.A., Energy and exergy analyses of a biomass-based hydrogen production system. Bioresource Technology, 2011, 102: 8466–8474.

    Article  Google Scholar 

  311. Iribarren D., Susmozas A., Petrakopoulou F., Dufour J., Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification. Journal of Cleaner Production, 2014, 69: 165–175.

    Article  Google Scholar 

  312. George J., Arun P., Muraleedharan C., Stoichiometric equilibrium model based assessment of hydrogen generation through biomass gasification. Procedia Technology, 2016, 25: 982–989.

    Article  Google Scholar 

  313. Gonzalez A.M., Lora E.E.S., Palacio J.C.E., delOlmo O.A.A., Hydrogen production from oil sludge gasification/biomass mixtures and potential use in hydrotreatment processes. International Journal of Hydrogen Energy, 2018, 43: 7808–7822.

    Article  Google Scholar 

  314. Shayan E., Zare V., Mirzaee I., Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents. Energy Conversion and Management, 2018, 159: 30–41.

    Article  Google Scholar 

  315. Czernik S., Evans R., French R., Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil. Catalysis Today, 2007, 129: 265–268.

    Article  Google Scholar 

  316. Dascomb J., Krothapalli A., Fakhrai R., Thermal conversion efficiency of producing hydrogen enriched syngas from biomass steam gasification. International Journal of Hydrogen Energy, 2013, 38: 11790–11798.

    Article  Google Scholar 

  317. Tian T., Li Q.H., He R., Tan Z.C., Zhang Y.G., Effects of biochemical composition on hydrogen production by biomass gasification. International Journal of Hydrogen Energy, 2017, 42: 19723–19732.

    Article  Google Scholar 

  318. Lin C.Y., Jo C.H., Hydrogen production from sucrose using an anaerobic sequencing batch reactor process. Journal of Chemical Technology and Biotechnology, 2003, 78: 678.

    Article  Google Scholar 

  319. Kumar N., Das D., Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochemistry, 2000, 35: 589–593.

    Article  ADS  Google Scholar 

  320. Oh S.E., Iyer P., Bruns M.A., Logan B.E., Biological hydrogen production using a membrane bioreactor. Biotechnology and Bioengineering, 2004, 87: 119–127.

    Article  Google Scholar 

  321. Morimoto M., Atsuko M., Atif A.A.Y., et al., Biological production of hydrogen from glucose by natural anaerobic microflora. International Journal of Hydrogen Energy, 2004, 29: 709–713.

    Article  Google Scholar 

  322. Lin C., Chang R.C., Fermentative hydrogen production at ambient temperature. International Journal of Hydrogen Energy, 2004, 29: 715–720.

    Article  Google Scholar 

  323. Fang H.H.P., Liu H., Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology, 2002, 82: 87–93.

    Article  Google Scholar 

  324. Kotsopoulos T.A., Zeng R.J., Angelidaki I., Biohydrogen production in granular upflow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyperthermophilic temperature (70°C). Biotechnology and Bioengineering, 2006, 94: 296–302.

    Article  Google Scholar 

  325. Karlsson A., Vallin L., Ejlertsson J., Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure. International Journal of Hydrogen Energy, 2008, 33: 953–962.

    Article  Google Scholar 

  326. Jayalakshmi S., Joseph K., Sukumaran V., Bio hydrogen generation from kitchen waste in an inclined plug flow reactor. International Journal of Hydrogen Energy, 2009, 34: 8854–8858.

    Article  Google Scholar 

  327. Zahedi S., Sales D., Romero L.I., Solera R., Hydrogen production from the organic fraction of municipal solid waste in anaerobic thermophilic acidogenesis: influence of organic loading rate and microbial content of the solid waste. Bioresource Technology, 2013, 129: 85–91.

    Article  Google Scholar 

  328. Gómez X., Moran A., Cuetos M.J., Sanchez M.E., The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: a two-phase process. Journal of Power Sources, 2006, 157: 727–732.

    Article  ADS  Google Scholar 

  329. Chu C.F., Xu K.Q., Li Y.Y., Inamori Y., Hydrogen and methane potential based on the nature of food waste materials in a two-stage thermophilic fermentation process. International Journal of Hydrogen Energy, 2012, 37: 10611–10618.

    Article  Google Scholar 

  330. Nathao C., Sirisukpoka U., Pisutpaisal N., Production of hydrogen and methane by one and two stage fermentation of food waste. International Journal of Hydrogen Energy, 2013, 38: 15764–15769.

    Article  Google Scholar 

  331. Strik D., Domnanovich A.M., Holubar P., A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage. Process Biochemistry, 2006, 41: 1235–1238.

    Article  Google Scholar 

  332. Wu X., Zhu J., Dong C., et al., Continuous biohydrogen production from liquid swine manure supplemented with glucose using an anaerobic sequencing batch reactor. International Journal of Hydrogen Energy, 2009, 34: 6636–6645.

    Article  Google Scholar 

  333. Xing Y., Li Z., Fan Y., Hou H., Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Environmental Science and Pollution Research, 2010, 17: 392–399.

    Article  Google Scholar 

  334. Ghimire A., Frunzo L., Pontoni L., et al., Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate. Journal of Environmental Management, 2015, 152: 43–48.

    Article  Google Scholar 

  335. Tang G.L., Huang J., Sun Z.J., Tang Q.Q., Yan C.H., Liu G.Q., Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. Journal of Bioscience and Bioengineering, 2008, 106: 80–87.

    Article  Google Scholar 

  336. Venetsaneas N., Antonopoulou G., Stamatelatou K., Kornaros M., Lyberatos G., Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresource Technology, 2009, 100: 3713–3717.

    Article  Google Scholar 

  337. Vijayaraghavan K., Ahmad D., Biohydrogen generation from palm oil mill effluent using anaerobic contact filter. International Journal of Hydrogen Energy, 2006, 31: 1284–1291.

    Article  Google Scholar 

  338. Dounavis A.S., Ntaikou I., Lyberatos G., Production of biohydrogen from crude glycerol in an upflow column bioreactor. Bioresource Technology, 2015, 198: 701–708.

    Article  Google Scholar 

  339. Chu C.Y., Tung L., Lin C.Y., Effect of substrate concentration and pH on biohydrogen production kinetics from food industry wastewater by mixed culture. International Journal of Hydrogen Energy, 2013, 38: 15849–15855.

    Article  Google Scholar 

  340. Kumar G., Sen B., Sivagurunathan P., Lin C.Y., High rate hydrogen fermentation of cello-lignin fraction in de-oiled jatropha waste using hybrid immobilized cell system. Fuel, 2016, 182: 131–140.

    Article  Google Scholar 

  341. Reungsang A., Sittijunda S., O-Thong S., Bio-hydrogen production from glycerol by immobilized Enterobacter aerogenes ATCC 13048 on heat-treated UASB granules as affected by organic loading rate. International Journal of Hydrogen Energy, 2013, 38: 6970–6979.

    Article  Google Scholar 

  342. Sittijunda S., Pattra S., Evaluation of different pretreatment methods to prepare an inoculum for bio-hydrogen production from cassava starch wastewater. KKU Research Journal, 2016, 21: 81–92.

    Google Scholar 

  343. Sheng T., Gao L., Zhao L., Liu W., Wang A., Direct hydrogen production from lignocellulose by the newly isolated Thermoanaerobacterium thermosaccharolyticum strain DD32. RSC Advances, 2015, 5: 99781–99788.

    Article  ADS  Google Scholar 

  344. Nguyen T.A.D., Kim K.R., Kim M.S., Sim S.J., Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana. International Journal of Hydrogen Energy, 2010, 35: 13392–13398.

    Article  Google Scholar 

  345. Chen C.C., Chuang Y.S., Lin C.Y., Lay C.H., Sen B., Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production. International Journal of Hydrogen Energy, 2012, 37: 15540–15546.

    Article  Google Scholar 

  346. Cao G.L., Zhao L., Wang A.J., Wang Z.Y., Ren N.Q., Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria. Biotechnol Biofuels, 2014, 7: 82.

    Article  Google Scholar 

  347. Cui M., Shen J., Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation. International Journal of Hydrogen Energy, 2012, 37: 1120–1124.

    Article  Google Scholar 

  348. Magnusson L., Islam R., Sparling R., Levin D., Cicek N., Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. International Journal of Hydrogen Energy, 2008, 33: 5398–5403.

    Article  Google Scholar 

  349. Hallenbeck P.C., Microbial technologies in advanced biofuels production. New York, 2012.

    Book  Google Scholar 

  350. Bakonyi P., Nemestóthy N., Simon V., Bélafi-Bakó K., Review on the start-up experiences of continuous fermentative hydrogen producing bioreactors. Renewable and Sustainable Energy Reviews, 2014, 40: 806–813.

    Article  Google Scholar 

  351. Lukajtis R., Holowacz I., Kucharska K., Glinka M., Rybarczyk P., Przyjazny A., Kaminski M., Hydrogen production from biomass using dark fermentation. Renewable and Sustainable Energy Reviews, 2018, 91: 665–694.

    Article  Google Scholar 

  352. Nandi R., Sengupta S., Microbial production of hydrogen: an overview. Critical Reviews in Microbiology, 1998, 24: 61–84.

    Article  Google Scholar 

  353. Shin H.S., Youn J.H., Kim S.H., Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. International Journal of Hydrogen Energy, 2004, 29: 1355–1363.

    Article  Google Scholar 

  354. Valdez-Vazquez I., Ríos-Leal E., Esparza-García F., Cecchi F., Poggi-Varaldo H.M., Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: mesophilic versus thermophilic regime. International Journal of Hydrogen Energy, 2005, 30: 1383–1391.

    Article  Google Scholar 

  355. Guo X.M., Trably E., Latrille E., Carrre H., Steyer J.P., Hydrogen production from agricultural waste by dark fermentation: a review. International Journal of Hydrogen Energy, 2010, 35: 10660–10673.

    Article  Google Scholar 

  356. Lin C.Y., Lay C.H., Sen B., et al., Fermentative hydrogen production from wastewaters: a review and prognosis. International Journal of Hydrogen Energy, 2012, 37: 15632–15642.

    Article  Google Scholar 

  357. Lay J.J., Li Y.Y., Noike T., Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Research, 1997, 31: 1518–1524.

    Article  Google Scholar 

  358. Chen C.C., Chen H.P., Wu J.H., Lin C.Y., Fermentative hydrogen production at high sulfate concentration. International Journal of Hydrogen Energy, 2008, 33: 1573–1578.

    Article  Google Scholar 

  359. Massanet-Nicolau J., Guwy A., Dinsdale R., et al., Production of hydrogen from sewage biosolids in a continuously fed bioreactor: Effect of hydraulic retention time and sparging. International Journal of Hydrogen Energy, 2010, 35(2): 469–478.

    Article  Google Scholar 

  360. Ottaviano L.M., Ramos L.R., Botta L.S., et al., Continuous thermophilic hydrogen production from cheese whey powder solution in an anaerobic fluidized bed reactor: Effect of hydraulic retention time and initial substrate concentration. International Journal of Hydrogen Energy, 2017, 42(8): 4848–4860.

    Article  Google Scholar 

  361. Liu C.M., Zheng J.L., Wu S.Y., Chu C.Y., Fermentative hydrogen production potential from washing wastewater of beverage production process. International Journal of Hydrogen Energy, 2016, 41(7): 4466–4473.

    Article  Google Scholar 

  362. Veeravalli S.S., Chaganti S.R., Lalman J.A., Heath D.D., Fermentative H2 production using a switchgrass steam exploded liquor fed to mixed anaerobic cultures: effect of hydraulic retention time, linoleic acid and nitrogen sparging. International Journal of Hydrogen Energy, 2014, 39(19): 9994–10002.

    Article  Google Scholar 

  363. Chou C.H., Wang C.W., Huang C.C., Lay J.J., Pilot study of the influence of stirring and pH on anaerobes converting high-solid organic wastes to hydrogen. International Journal of Hydrogen Energy, 2008, 33: 1550–1558.

    Article  Google Scholar 

  364. Mizuno O., Dinsdale R., Hawkes F.R., Hawkes D.L., Noike T., Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresource Technology, 2000, 73: 59–65.

    Article  Google Scholar 

  365. Kim D.H., Han S.K., Kim S.H., Shin H.S., Effect of gas sparging on continuous fermentative hydrogen production. International Journal of Hydrogen Energy, 2006, 31: 2158–2169.

    Article  Google Scholar 

  366. Lee K., Tseng T., Liu Y., Hsiao Y., Enhancing the performance of dark fermentative hydrogen production using a reduced pressure fermentation strategy. International Journal of Hydrogen Energy, 2012, 37: 15556–15562.

    Article  Google Scholar 

  367. Mandal B., Nath K., Das D., Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae. Biotechnology Letters, 2006, 28: 831–835.

    Article  Google Scholar 

  368. Yasin N.H.M., Mumtaz T., Hassan M.A., Abd Rahman N., Food waste and food processing waste for biohydrogen production: a review. Journal of Environmental Management, 2013, 130: 375–385.

    Article  Google Scholar 

  369. Chaganti S.R., Kim D.H., Lalman J.A., Dark fermentative hydrogen production by mixed anaerobic cultures: effect of inoculum treatment methods on hydrogen yield. Renewable Energy, 2012, 48: 117–121.

    Article  Google Scholar 

  370. Shobana S., Saratale G.D., Pugazhendhi A., Arvindnarayan S., Periyasamy S., Kumar G., Kim S.H., Fermentative hydrogen production from mixed and pure microalgae biomass: Key challenges and possible opportunities. International Journal of Hydrogen Energy, 2017, 42: 26440–26453.

    Article  Google Scholar 

  371. Hsu C.W., Tung C.M., Lin C.Y., Industrialization roadmap model for fermentative hydrogen production from biomass in Taiwan. International Journal of Hydrogen Energy, 2017, 42: 27460–27470.

    Article  Google Scholar 

  372. Nakyai T., Authayanun S., Patcharavorachot Y., Arpornwichanop A., Assabumrungrat S., Saebea D., Exergoeconomics of hydrogen production from biomass air-steam gasification with methane co-feeding. Energy Conversion and Management, 2017, 140: 228–239.

    Article  Google Scholar 

  373. Kumar M., Oyedun A.O., Kumar A., A comparative analysis of hydrogen production from the thermochemical conversion of algal biomass. International Journal of Hydrogen Energy, 2019, 44: 10384–10397.

    Article  Google Scholar 

  374. Valente A., Iribarren D., Gálvez-Martos J.L., Dufour J., Robust eco-efficiency assessment of hydrogen from biomass gasification as an alternative to conventional hydrogen: A life-cycle study with and without external costs. Science of the Total Environment, 2019, 650: 1465–1475.

    Article  ADS  Google Scholar 

  375. Liang H.W., Ren J.Z., Dong L., Gao Z.Q., Zhang N., Pan M., Is the hydrogen production from biomass technology really sustainable? Answer by life cycle energy analysis. International Journal of Hydrogen Energy, 2016, 41: 10507–10514.

    Article  Google Scholar 

  376. Hsu C.W., Lin C.Y., Using social network analysis to examine the technological evolution of fermentative hydrogen production from biomass. International Journal of Hydrogen Energy, 2016, 41: 21573–21582.

    Article  Google Scholar 

  377. Ren J.Z., Fedele A., Mason M., Manzardo A., Scipioni A., Fuzzy multi-actor multi-criteria decision making for sustainability assessment of biomass-based technologies for hydrogen production. International Journal of Hydrogen Energy, 2013, 38: 9111–9120.

    Article  Google Scholar 

  378. Valente A., Iribarren D., Dufour J., Life cycle sustainability assessment of hydrogen from biomass gasification: A comparison with conventional hydrogen. International Journal of Hydrogen Energy, 2019, 44: 21193–21203.

    Article  Google Scholar 

  379. Kanoglu M., Bolatturk A., Yilmaz C., Thermodynamic analysis of models used in hydrogen production by geothermal energy. International Journal of Hydrogen Energy, 2010, 35: 8783–8791.

    Article  Google Scholar 

  380. Spacil H.S., Tedmon J.C.S., Electrochemical dissociation of water vapor in solid oxide electrolyte cells I. Thermodynamics and cell char-acteristics. Journal of the Electrochemical Society, 1969, 116: 1618–1626.

    Article  ADS  Google Scholar 

  381. Valdimar K.J., Ragnar L.G., Bragi R., Thorsteinn I.S., The feasibility of using geothermal energy in hydrogen production. Geothermics, 1991, 21: 673–681.

    Google Scholar 

  382. Sigurvinsson J., Mansilla C., Arnason B., Bontemps A., Mare’chal A., Sigfusson T.I., Werkoff F., Heat transfer problems for the production of hydrogen from geothermal energy. Energy Conversion and Management, 2006, 47: 3543–3551.

    Article  Google Scholar 

  383. Sigurvinsson J., Mansilla C., Lovera P., Werkoff F., Can high temperature steam electrolysis function with geothermal heat? International Journal of Hydrogen Energy, 2007, 32: 1174–1182.

    Article  Google Scholar 

  384. Yilmaz C., Kanoglu M., Bolatturk A., Gadalla M., Economics of hydrogen production and liquefaction by geothermal energy. International Journal of Hydrogen Energy, 2012, 37: 2058–2069.

    Article  Google Scholar 

  385. Moya D., Aldás C., Kaparaju P., Geothermal energy: Power plant technology and direct heat applications. Renewable and Sustainable Energy Reviews, 2018, 94: 889–901.

    Article  Google Scholar 

  386. Ramazankhani M.E., Mostafaeipour A., Hosseininasab H., Fakhrzad M.B., Feasibility of geothermal power assisted hydrogen production in Iran. International Journal of Hydrogen Energy, 2016, 41: 18351–18369.

    Article  Google Scholar 

  387. Gouareh A., Settou N., Khalfi A., Recioui B., Negrou B., Rahmouni S., Dokkar B., GIS-based analysis of hydrogen production from geothermal electricity using CO2 as working fluid in Algeria. International Journal of Hydrogen Energy, 2015, 40: 15244–15253.

    Article  Google Scholar 

  388. Yilmaz C., Kanoglu M., Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis. Energy, 2014, 69: 592–602.

    Article  Google Scholar 

  389. Yuksel Y.E., Ozturk M., Thermodynamic and thermoeconomic analyses of a geothermal energy based integrated system for hydrogen production. International Journal of Hydrogen Energy, 2017, 42: 2530–2546.

    Article  Google Scholar 

  390. Gholamian E., Habibollahzadea A., Zare V., Development and multi-objective optimization of geothermal-based organic Rankine cycle integrated with thermoelectric generator and proton exchange membrane electrolyzer for power and hydrogen production. Energy Conversion and Management, 2018, 174: 112–125.

    Article  Google Scholar 

  391. Yuksel Y.E., Ozturk M., Dincer I., Energetic and exergetic performance evaluations of a geothermal power plant based integrated system for hydrogen production. International Journal of Hydrogen Energy, 2018, 43: 78–90.

    Article  Google Scholar 

  392. Cao L.Y., Lou J.W., Wang J.F., Dai Y.P., Exergy analysis and optimization of a combined cooling and power system driven by geothermal energy for ice-making and hydrogen production. Energy Conversion and Management, 2018, 174: 886–896.

    Article  Google Scholar 

  393. Yuksel Y.E., Ozturk M., Dincer I., Thermodynamic analysis and assessment of a novel integrated geothermal energy-based system for hydrogen production and storage. International Journal of Hydrogen Energy, 2018, 43: 4233–4243.

    Article  Google Scholar 

  394. Karakilcik H., Erden M., Karakilcik M., Investigation of hydrogen production performance of chlor-alkali cell integrated into a power generation system based on geothermal resources. International Journal of Hydrogen Energy, 2019, 44: 14145–14150.

    Article  Google Scholar 

  395. AlZaharani A.A., Dincer I., Naterer G.F., Performance evaluation of a geothermal based integrated system for power, hydrogen and heat generation. International Journal of Hydrogen Energy, 2013, 38: 14505–14511.

    Article  Google Scholar 

  396. Ghaebi H., Farhang B., Parikhani T., Rostamzadeh H., Energy, exergy and exergoeconomic analysis of a cogeneration system for power and hydrogen production purpose based on TRR method and using low grade geothermal source. Geothermics, 2018, 71: 132–145.

    Article  ADS  Google Scholar 

  397. Ganjehsarab H., Mixed refrigerant as working fluid in Organic Rankine Cycle for hydrogen production driven by geothermal energy. International Journal of Hydrogen Energy, 2019, 44: 18703–18711.

    Article  Google Scholar 

  398. Balta M.T., Dincer I., Hepbasli A., Exergoeconomic analysis of a hybrid copperechlorine cycle driven by geothermal energy for hydrogen production. International Journal of Hydrogen Energy, 2011, 36: 11300–11308.

    Article  Google Scholar 

  399. Balta M.T., Dincer I., Hepbasli A., Energy and exergy analyses of a new four-step copper-chlorine cycle for geothermal-based hydrogen production. Energy, 2010, 35: 3263–3272.

    Article  Google Scholar 

  400. Ratlamwala T.A.H., Dincer I., Comparative efficiency assessment of novel multi-flash integrated geothermal systems for power and hydrogen production. Applied Thermal Engineering, 2012, 48: 359–366.

    Article  Google Scholar 

  401. Rahmouni S., Settou N., Chennouf N., Negrou B., Houari M., A technical, economic and environmental analysis of combining geothermal energy with carbon sequestration for hydrogen production. Energy Procedia, 2014, 50: 263–269.

    Article  Google Scholar 

  402. Yilmaz C., Kanoglu M., Abusoglu A., Exergetic cost evaluation of hydrogen production powered by combined flash-binary geothermal power plant. International Journal of Hydrogen Energy, 2015, 40: 14021–14030.

    Article  Google Scholar 

  403. Yilmaz C., Kanoglu M., Abusoglu A., Thermoeconomic cost evaluation of hydrogen production driven by binary geothermal power plant. Geothermics, 2015, 57: 18–25.

    Article  ADS  Google Scholar 

  404. Yilmaz C., Thermoeconomic modeling and optimization of a hydrogen production system using geothermal energy. Geothermics, 2017, 65: 32–43.

    Article  ADS  Google Scholar 

  405. Kianfard H., Khalilarya S., Jafarmadar S., Exergy and exergoeconomic evaluation of hydrogen and distilled water production via combination of PEM electrolyzer, RO desalination unit and geothermal driven dual fluid ORC. Energy Conversion and Management, 2018, 177: 339–349.

    Article  Google Scholar 

  406. Karapekmez A., Dincer I., Modelling of hydrogen production from hydrogen sulfide in geothermal power plants. International Journal of Hydrogen Energy, 2018, 43: 10569–10579.

    Article  Google Scholar 

  407. Yilmaz C., Koyuncu I., Alcin M., Tuna M., Artificial Neural Networks based thermodynamic and economic analysis of a hydrogen production system assisted by geothermal energy on Field Programmable Gate Array. International Journal of Hydrogen Energy, 2019, 44: 17443–17459.

    Article  Google Scholar 

  408. Ebadollahi M., Rostamzadeh H., Pedram M.Z., Ghaebi H., Amidpour M., Proposal and assessment of a new geothermal-based multigeneration system for cooling, heating, power, and hydrogen production, using LNG cold energy recovery. Renewable Energy, 2019, 135: 66–87.

    Article  Google Scholar 

  409. Yuksel Y.E., Ozturk M., Dincer I., Analysis and performance assessment of a combined geothermal power-based hydrogen production and liquefaction system. International Journal of Hydrogen Energy, 2018, 43: 10268–10280.

    Article  Google Scholar 

  410. Yilmaz C., Life cycle cost assessment of a geothermal power assisted hydrogen energy system. Geothermics, 2020, 83: 101737.

    Article  Google Scholar 

  411. James Ani., Which ocean has the most potential for hydrogen production. https://www.chinashpp.com/zhiqing/2791.html. 2019-06-07.

    Google Scholar 

  412. Vijayakrishna R.E., Rajagopan S., Pranitha V., Kathambari R., Modeling of hydrogen production through an ocean thermal energy conversion system. International Journal of Emerging Science and Engineering, 2013, 1(9): 41–46.

    Google Scholar 

  413. Dugger G.L., Francis E.J., Design of an ocean thermal energy plant ship to produce ammonia via hydrogen. International Journal of Hydrogen Energy, 1997, 2: 231–249.

    Article  Google Scholar 

  414. Nihous G.C., Vega L.A., Design of a 100 MW OTEC-hydrogen plant ship. Marine Structures, 1993, 6: 207–221.

    Article  Google Scholar 

  415. Ishaq H., Dincer I., A comparative evaluation of OTEC, solar and wind energy based systems for clean hydrogen production. Journal of Cleaner Production, 2020, 246: 118736.

    Article  Google Scholar 

  416. Ryzin J.V., Grandelli P., Lipp D., Argall R., The hydrogen economy of 2050: OTEC driven? Oceans Conference, 2005, pp. 2675–2682.

    Google Scholar 

  417. Avery W.H., Richards D., Dugger G.L., Hydrogen generation by OTEC electrolysis, and economical energy transfer to world markets via ammonia and methanol. International Journal of Hydrogen Energy, 1985, 10(11): 727–736.

    Article  Google Scholar 

  418. Banerjee S., Musa M.N., Jaafar A.B., Economic assessment and prospect of hydrogen generated by OTEC as future fuel. International Journal of Hydrogen Energy 2017, 42: 26–37.

    Article  Google Scholar 

  419. Tributsch H., Hydrogen from stormy oceans. Sustainable Energy Harvesting Technologies - Past, Present and Future, 2011, pp. 215–234.

    Google Scholar 

  420. Raut G., Goudarzi N., North Carolina wave energy resource: hydrogen production potential. Proceedings of the ASME 2018 Power Conference, 2018, Lake Buena Vista, FL, USA.

    Google Scholar 

  421. Temeev A.A., Belokopytov V.P., Temeev S.A., An integrated system of the floating wave energy converter and electrolytic hydrogen producer. Renewable Energy, 2006, 31: 225–239.

    Article  Google Scholar 

  422. Dio V.D., Franzitta V., Muzio F., Scaccianoce G., Trapanese. The use of sea waves for generation of electrical energy and Hydrogen. Oceans Conference, 2009, pp. 1–4.

    Google Scholar 

  423. Boscaino V., Cipriani G., Curto D., et al., A small scale prototype of a wave energy conversion system for hydrogen production. Conference of the Industrial Electronics Society, 2015, pp. 3591–3596.

    Google Scholar 

  424. Colucci A., Boscaino V., Cipriani G., et al., An inertial system for the production of electricity and hydrogen from sea wave energy. Oceans Conference, 2015, pp. 1–10.

    Google Scholar 

  425. Serna L., Tadeo F., Offshore hydrogen production from wave energy. International Journal of Hydrogen Energy, 2014, 39: 1549–1557.

    Article  Google Scholar 

  426. Curto D., Trapanese M., Experimental tests on hydrogen production from sea waves energy. OCEANS 2017 - Anchorage, Anchorage, AK, 2017, pp. 1–5.

    Google Scholar 

  427. Lodhi M., Power potential from ocean current for hydrogen production. International Journal of Hydrogen Energy, 1988, 13(3): 151–172.

    Article  MathSciNet  Google Scholar 

  428. Pitts T.H., Submerged ocean current electrical generator and method for hydrogen production. Deep Sea Research Part B. Oceanographic Literature Review, 1990, 37(3): 278.

    Article  ADS  Google Scholar 

  429. Kumano K., Hydrogen energy supply system ocean current power generation. Patent No.: US 10, 138, 563 B2.

  430. Bellotti D., Rivarolo M., Magistri L., Massardo A.F., Thermo-economic comparison of hydrogen and hydro-methane produced from hydroelectric energy for land transportation. International Journal of Hydrogen Energy, 2015, 40: 2433–2444.

    Article  Google Scholar 

  431. Olateju B., Kumar A., A techno-economic assessment of hydrogen production from hydropower in Western Canada for the upgrading of bitumen from oil sands. Energy, 2016, 115: 604–614.

    Article  Google Scholar 

  432. Roche U.L., The greenland hydropower as a source of electrolytic hydrogen. International Journal of Hydrogen Energy, 1977, 2: 405411.

    Google Scholar 

  433. Tarnay D.S., Hydrogen production at hydro-power plants. International Journal of Hydrogen Energy, 1985, 10(9): 577–584.

    Article  ADS  Google Scholar 

  434. Matros M.C., National hydrogen energy program in Brazil. International Journal of Hydrogen Energy, 1985, 10(9): 601–606.

    Article  Google Scholar 

  435. SILVA D.B.D., Bitut R.S., Electrolytic hydrogen production in Brazilian electric utilities-a way to increase return on investments. International Journal of Hydrogen Energy, 1988, 13(2): 77–79.

    Article  Google Scholar 

  436. Da Silva E.P., Marin Neto A.J., Ferreira P.F.P., Camargo J.C., Apolinario F.R., Pinto C.S., Analysis of hydrogen production from combined photovoltaics, wind energy and secondary hydroelectricity supply in Brazil. Solar Energy, 2005, 78: 670–677.

    Article  ADS  Google Scholar 

  437. Hotza D., Diniz da Costa J.C., Fuel cells development and hydrogen production from renewable resources in Brazil. International Journal of Hydrogen Energy, 2008, 33: 4915–4935.

    Article  Google Scholar 

  438. Padilha J.C., da Trindade L.G., de Souza R.F., Miguel M., An evaluation of the potential of the use of wasted hydroelectric capacity to produce hydrogen to be used in fuel cells in order to decrease CO2 emissions in Brazil. International Journal of Hydrogen Energy, 2009, 34: 7898–7902.

    Article  Google Scholar 

  439. Gretz J., Baselt J.P., Ullmann O., Wendt H., The 100MW Euro-Quebec hydro-hydrogen pilot project. International Journal of Hydrogen Energy, 1990, 15(6): 419424.

    Article  Google Scholar 

  440. Gretz J., Drolet B., Kluyskens D., Sandmann F., Ullmann O., Status of the hydro-hydrogen pilot project (EQHHPP). International Journal of Hydrogen Energy, 1994, 19(2): 169–174.

    Article  Google Scholar 

  441. Ouellette N., Rogner H.H., Scott D.S., Hydrogen from remote excess hydroelectricity. part I: production plant capacity and production costs. International Journal of Hydrogen Energy, 1995, 20(11): 865–871.

    Article  Google Scholar 

  442. Ouellette N., Rogner H.H., Scott D.S., Hydrogen from remote excess hydroelectricity. part II: hydrogen peroxide or bioethanol. International Journal of Hydrogen Energy, 1995, 20(11): 873–880.

    Article  Google Scholar 

  443. Ouellette N., Rogner H.H., Scott D.S., Hydrogen-based industry from remote excess hydroelectricity. International Journal of Hydrogen Energy, 1997, 22(4): 397–403.

    Article  Google Scholar 

  444. Gummer J., Head C., Hydrogen, hydropower and world poverty: the economics of hydropower sourcing. Conference Hydrogen, Cavtat, Croatia, 2003.

    Google Scholar 

  445. Yumurtaci Z., Bilgenb E., Hydrogen production from excess power in small hydroelectric installations. International Journal of Hydrogen Energy, 2004, 29: 687–693.

    Article  Google Scholar 

  446. Contreras A., Posso F., Veziroglu T.N., Modeling and simulation of the production of hydrogen using hydroelectricity in Venezuela. International Journal of Hydrogen Energy, 2007, 32: 1219–1224.

    Article  Google Scholar 

  447. Contreras A., Posso F., Technical and financial study of the development in Venezuela of the hydrogen energy system. Renewable Energy, 2011, 36: 3114–3123.

    Article  Google Scholar 

  448. Ale B.B., Bade Shrestha S.O., Hydrogen energy potential of Nepal. International Journal of Hydrogen Energy, 2008, 33: 4030–4039.

    Article  Google Scholar 

  449. Ale B.B., Bade Shrestha S.O., Introduction of hydrogen vehicles in Kathmandu Valley: A clean and sustainable way of transportation. Renewable Energy, 2009, 34: 1432–1437.

    Article  Google Scholar 

  450. Posso F., Espinoza J.L., Sanchez J., Zalamea J., Hydrogen from hydropower in Ecuador: Use and impacts in the transport sector. International Journal of Hydrogen Energy, 2015, 40: 15432–15447.

    Article  Google Scholar 

  451. Valente A., Iribarren D., Dufour J., Spazzafumo G., Life-cycle performance of hydrogen as an energy management solution in hydropower plants: A case study in Central Italy. International Journal of Hydrogen Energy, 2015, 40(46): 16660–16672.

    Article  Google Scholar 

  452. Huang P.H., Kuo J.K., Wu Z.D., Applying small wind turbines and a photovoltaic system to facilitate electrolysis hydrogen production. International Journal of Hydrogen Energy, 2016, 41: 8514–8524.

    Article  Google Scholar 

  453. Siddiqui O., Ishaq H., Dincer I., A novel solar and geothermal-based trigeneration system for electricity generation, hydrogen production and cooling. Energy Conversion and Management, 2019, 198: 111812.

    Article  Google Scholar 

  454. Bicer Y., Dincer I., Development of a new solar and geothermal based combined system for hydrogen production. Solar Energy, 2016, 127: 269–284.

    Article  ADS  Google Scholar 

  455. Santarelli M., Macagno S., Hydrogen as an energy carrier in stand-alone applications based on PV and PV-micro-hydro systems. Energy, 2004, 29(8): 1159–1182.

    Article  Google Scholar 

  456. Khosravi A., Syri S., Assad M.E.H., Malekan M., Thermodynamic and economic analysis of a hybrid ocean thermal energy conversion/photovoltaic system with hydrogen-based energy storage system. Energy, 2019, 172: 304–319.

    Article  Google Scholar 

  457. Yilmaz F., Ozturk M., Selbas R., Thermodynamic performance assessment of ocean thermal energy conversion based hydrogen production and liquefaction process. International Journal of Hydrogen Energy, 2018, 43: 10626–10636.

    Article  Google Scholar 

  458. Wu H.F., Liu Q.B., Bai Z., Xie G.X., Zheng J., Performance investigation of a novel multi-functional system for power, heating and hydrogen with solar energy and biomass. Energy Conversion and Management, 2019, 196: 768–778.

    Article  Google Scholar 

  459. Moharramian A., Soltani S., Rosen M.A., Mahmoudi S.M.S., Bhattacharya T., Modified exergy and modified exergoeconomic analyses of a solar based biomass co-fired cycle with hydrogen production. Energy, 2019, 167: 715–729.

    Article  Google Scholar 

  460. Do Sacramento E.M., Sales A.D., de Lima L.C., Nejat V.T., A solar-wind hydrogen energy system for the Ceará state - Brazil. International Journal of Hydrogen Energy, 2008, 33: 5304–5311.

    Article  Google Scholar 

  461. Blal M., Belasri A., Benatillah A., Hamouda M., Lachtar S., Sahouane N., Laribi S., Mostefaoui M., Assessment of solar and wind energy as motive for potential hydrogen production of Algeria country; development a methodology for uses hydrogen based fuel cells. International Journal of Hydrogen Energy, 2018, 43: 9192–9210.

    Article  Google Scholar 

  462. Esteves N.B., Sigal A., Leiva E.P.M., Rodri’guez C.R., Cavalcante F.S.A., de Lima L.C., Wind and solar hydrogen for the potential production of ammonia in the state of Ceara -Brazil. International Journal of Hydrogen Energy, 2015, 40: 9917–9923.

    Article  Google Scholar 

  463. Marchenko O.V., Solomin S.V., Modeling of hydrogen and electrical energy storages in wind/PV energy system on the Lake Baikal coast. International Journal of Hydrogen Energy, 2017, 42: 9361–9370.

    Article  Google Scholar 

  464. Cha’vez-Ramírez A.U., Vallejo-Becerra V., Cruz J.C., Ornelas R., Orozco G., Munoz-Guerrero R., Arriaga L.G., A hybrid power plant (Solar-Wind-Hydrogen) model based in artificial intelligence for a remote-housing application in Mexico. International Journal of Hydrogen Energy, 2013, 38: 2641–2655.

    Article  Google Scholar 

  465. Panahandeh B., Bard J., Outzourhit A., Zejli D., Simulation of PV-Wind-hybrid systems combined with hydrogen storage for rural electrification. International Journal of Hydrogen Energy, 2011, 36: 4185–4197.

    Article  Google Scholar 

  466. Pan X.M., Li Z.Y., Zhang C.M., Lv H., Liu S.J., Ma J.X., Safety study of a wind-solar hybrid renewable hydrogen refuelling station in China. International Journal of Hydrogen Energy, 2016, 41: 13315–13321.

    Article  Google Scholar 

  467. Salemme L., Simeone M., Chirone R., Salatino P., Analysis of the energy efficiency of solar aided biomass gasification for pure hydrogen production. International Journal of Hydrogen Energy, 2014, 39: 14622–14632.

    Article  Google Scholar 

  468. Xiao P., Guo L.J., Zhang X.M., Zhu C., Ma S.H., Continuous hydrogen production by biomass gasification in supercritical water heated by molten salt flow: System development and reactor assessment. International Journal of Hydrogen Energy, 2013, 38: 12927–12937.

    Article  Google Scholar 

  469. Yan C., Wang J.Q., Du H.F., Zhu L.Y., Jiang T.T., Jiang H., Wu H.J., Wang B.H., Solar Thermal Electrochemical Process (STEP) action to biomass: Solar thermo-coupled electrochemical synergy for efficient breaking of biomass to biofuels and hydrogen. Energy Conversion and Management, 2019, 180: 1247–1259.

    Article  Google Scholar 

  470. Ishaq H., Dincer I., Naterer G.F., Development and assessment of a solar, wind and hydrogen hybrid trigeneration system. International Journal of Hydrogen Energy, 2018, 43: 23148–23160.

    Article  Google Scholar 

  471. Luqman M., Bicer Y., Al-Ansari T., Thermodynamic analysis of an oxy-hydrogen combustor supported solar and wind energy-based sustainable polygeneration system for remote locations. International Journal of Hydrogen Energy, 2020, 45: 3470–3483.

    Article  Google Scholar 

  472. Qolipour M., Mostafaeipour A., Tousi O.M., Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: A case study. Renewable and Sustainable Energy Reviews, 2017, 78: 113–123.

    Article  Google Scholar 

  473. Fan X.C., Wang W.Q., Shi R.J., Cheng Z.J., Hybrid pluripotent coupling system with wind and photovoltaic-hydrogen energy storage and the coal chemical industry in Hami, Xinjiang. Renewable and Sustainable Energy Reviews, 2017, 72: 950–960.

    Article  Google Scholar 

  474. Zhang P.P., Maleki A., Rosen M.A., Liu J.Q., Sizing a stand-alone solar-wind-hydrogen energy system using weather forecasting and a hybrid search optimization algorithm. Energy Conversion and Management, 2019, 180: 609–621.

    Article  Google Scholar 

  475. Akyuz E., Oktay Z., Dincer I., Performance investigation of hydrogen production from a hybrid wind-PV system. International Journal of Hydrogen Energy, 2012, 37: 16623–16630.

    Article  Google Scholar 

  476. Sopian K., Ibrahim M.Z., Daud W.R.W., Othman M.Y., Yatim B., Amin N., Performance of a PV-wind hybrid system for hydrogen production. Renewable Energy, 2009, 34: 1973–1978.

    Article  Google Scholar 

  477. Petrakopoulou F., Robinson A., Loizidou M., Exergetic analysis and dynamic simulation of a solar-wind power plant with electricity storage and hydrogen generation. Journal of Cleaner Production, 2016, 113: 450–458.

    Article  Google Scholar 

  478. Caldero M., Caldero’n A.J., Ramiro A., González J.F., Weather data and energy balance of a hybrid photovoltaic-wind system with hydrogen storage. International Journal of Hydrogen Energy, 2010, 35: 7706–7715.

    Article  Google Scholar 

  479. Da Silva E.P., Marin Neto A.J., Ferreira P.F.P., Camargo J.C., Apolinário F.R., Pinto C.S., Analysis of hydrogen production from combined photovoltaics, wind energy and secondary hydroelectricity supply in Brazil. Solar Energy, 2005, 78: 670–677.

    Article  ADS  Google Scholar 

  480. Shakya B.D., Aye L., Musgrave P., Technical feasibility and financial analysis of hybrid wind-photovoltaic system with hydrogen storage for Cooma. International Journal of Hydrogen Energy, 2005, 30: 9–20.

    Article  Google Scholar 

  481. Al-Sharafi A., Sahin A.Z., Ayar T., Yilbas B.S., Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia. Renewable and Sustainable Energy Reviews, 2017, 69: 33–49.

    Article  Google Scholar 

  482. Khalilnejad A., Riahy G.H., A hybrid wind-PV system performance investigation for the purpose of maximum hydrogen production and storage using advanced alkaline electrolyzer. Energy Conversion and Management, 2014, 80: 398–406.

    Article  Google Scholar 

  483. Dufo-López R., Jose L., Bernal-Agustin, Franklin Mendoza. Design and economical analysis of hybrid PV-wind systems connected to the grid for the intermittent production of hydrogen. Energy Policy, 2009, 37: 3082–3095.

    Article  Google Scholar 

  484. Bernal-Agustín J.L., Dufo-López R., Techno-economical optimization of the production of hydrogen from PV-Wind systems connected to the electrical grid. Renewable Energy, 2010, 35: 747–758.

    Article  Google Scholar 

  485. Kalinci Y., Dincer I., Hepbasli A., Energy and exergy analyses of a hybrid hydrogen energy system: A case study for Bozcaada. International Journal of Hydrogen Energy, 2017, 42: 2492–2503.

    Article  Google Scholar 

  486. Karapekmez A., Dincer I., Thermodynamic analysis of a novel solar and geothermal based combined energy system for hydrogen production. International Journal of Hydrogen Energy, 2020, 45: 5608–5628.

    Article  Google Scholar 

  487. Kauw M., Benders R.M.J., Visser C., Green methanol from hydrogen and carbon dioxide using geothermal energy and/or hydropower in Iceland or excess renewable electricity in Germany. Energy, 2015, 90: 1–10.

    Article  Google Scholar 

  488. Kalinci Y., Hepbasli A., Dincer I., Performance assessment of hydrogen production from a solar-assisted biomass gasification system. International Journal of Hydrogen Energy, 2013, 38: 6120–6129.

    Article  Google Scholar 

  489. Liao B., Guo L.J., Lu Y.J., Zhang X.M., Solar receiver/reactor for hydrogen production with biomass gasification in supercritical water. International Journal of Hydrogen Energy, 2013, 38: 13038–13044.

    Article  Google Scholar 

  490. Liao B., Guo L.J., Concentrating solar thermochemical hydrogen production by biomass gasification in supercritical water. Energy Procedia, 2015, 69: 444–450.

    Article  Google Scholar 

  491. Ishaq H., Dincer I., Design and performance evaluation of a new biomass and solar based combined system with thermochemical hydrogen production. Energy Conversion and Management, 2019, 196: 395–409.

    Article  Google Scholar 

  492. Bellouard Q., Rodat S., Abanades S., Ravel S., Frayssines P.E., Design, simulation and experimental study of a directly-irradiated solar chemical reactor for hydrogen and syngas production from continuous solar-driven wood biomass gasification. International Journal of Hydrogen Energy, 2019, 44: 19193–19205.

    Article  Google Scholar 

  493. Ahmadi P., Dincer I., Rosen M.A., Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis. International Journal of Hydrogen Energy, 2013, 38: 1795–1805.

    Article  Google Scholar 

Download references

Acknowledgement

The work of this paper is sponsored by National Key R&D Program of China (Grant No. 2020YFE0200300), Applied Basic Research Project of Sichuan Province (Project No. 2017JY0253) and Fundamental Research Funds for the Central Universities (Project No. 2682020CX28 and 2682020CX36).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Ji, W., Cao, X. et al. A Current Perspective on the Renewable Energy Hydrogen Production Process. J. Therm. Sci. 32, 542–596 (2023). https://doi.org/10.1007/s11630-023-1749-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1749-3

Keywords

Navigation