Skip to main content
Log in

NiCo2S4/rGO composite electrode material derived from Co-based MOFs for hybrid supercapacitors

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The Co-based organic skeleton was combined with graphene oxide (GO) as a precursor, Ni2+ hydrolysis etching was introduced, and finally, NiCo-LDH/GO was obtained. The final composite electrode material NiCo2S4/rGO was obtained by high-temperature vulcanization. The introduction of MOFs and rGO significantly increased the specific surface area of the material and made it have excellent electrochemical properties. The specific capacitance of the composite NiCo2S4/20rGO reaches an astonishing 272.5 mAh g−1 when the current density is 1 A g−1. In addition, at a large current of 10 A g−1, the specific capacitance of the material can also reach 139.5 mAh g−1, and after a long cycle of 5000 cycles at such a current density, the capacity remains at the original 73.2%. With NiCo2S4/20rGO electrode material as the positive electrode and activated carbon as the negative electrode, the hybrid supercapacitor is assembled. At an energy density of 56.9 Wh kg−1, its power density reaches an excellent 799 W kg−1, and it still has a capacity retention rate of 74% at a current density of 10 A g−1. The excellent properties of composites demonstrated in this work open up new possibilities for high-quality energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Abazari R, Sanati S, Morsali A et al (2021) High specific capacitance of a 3D-metal-organic framework-confined growth in CoMn2O4 nanostars as advanced supercapacitor electrode materials. J Mater Chem A 9(17):11001–11012

    Article  CAS  Google Scholar 

  2. Dhakal G, Mohapatra D, Kim YI et al (2022) High-performance supercapacitors fabricated with activated carbon derived from lotus calyx biowaste. Renew Energy 189:587–600

    Article  CAS  Google Scholar 

  3. Shinde PA, Abbas Q, Chodankar NR et al (2023) Strengths, weaknesses, opportunities, and threats (SWOT) analysis of supercapacitors: a review. J Energy Chem 79:611–638

    Article  CAS  Google Scholar 

  4. Lu ZH, Hu ZL, Xiao L et al (2022) Battery-type Ni-Co-Se hollow microspheres cathode materials enabled by bifunctional N-doped carbon quantum dots with ultrafast electrochemical kinetics for hybrid supercapacitors. Chem Eng J 450:138347

    Article  CAS  Google Scholar 

  5. Liu XR, Zhu YR, Lu ZH et al (2023) Heterostructured flower-like NiO/Co3O4 microspheres modified by bifunctional carbon quantum dots as a battery- type cathode for high energy and power density hybrid supercapacitors. Carbon Neutralization 2:721–737

    Article  Google Scholar 

  6. Smith BD, Wills RGA, Cruden AJ (2020) Aqueous Al-ion cells and supercapacitors - a comparison. Energy Rep 6:166–173

    Article  Google Scholar 

  7. Tian J, Wang YY, Sun YL (2021) Preparation of 3D graphene-based aerogels and its application in supercapacitors. Chemical Research and Application 33(4):593–599

    Google Scholar 

  8. Cao YJ, Yang W, Wang MY et al (2021) Metal-organic frameworks as highly efficient electrodes for long cycling stability supercapacitors. Int J Hydrogen Energy 46(35):18179–18206

    Article  CAS  Google Scholar 

  9. Dong YX, Yue XQ, Liu Y et al (2022) Hierarchical core-shell-structured bimetallic nickel-cobalt phosphide nanoarrays coated with nickel sulfide for high-performance hybrid supercapacitors. J Colloid Interface Sci 628:222–232

    Article  CAS  PubMed  Google Scholar 

  10. Shinde PA, Chodankar NR, Abdelkareem MA et al (2022) All transition metal selenide composed high-energy solid-state hybrid supercapacitor. Small 18(20) 2200248

  11. Sun XJ, Zhang DD, Umar A et al (2023) Ternary ZnCo2O4 nanowire electrode materials for high-capacitance and flexible electrochemical capacitors. ACS Appl Energy Mater 6(18):9594–9601

    Article  CAS  Google Scholar 

  12. Xiong CY, Li MR, Han Q et al (2022) Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances. J Mater Sci Technol 97:190–200

    Article  CAS  Google Scholar 

  13. Sandhiya M, Vivekanand BSS et al (2020) Na2MoO4-incorporated polymer gel electrolyte for high energy density flexible supercapacitor. ACS Appl Energy Mater 3(11):11368–11377

    Article  CAS  Google Scholar 

  14. Zhang K, Gao X, Yao F et al (2023) Construction of hierarchical MOF-derived CoS2 microsheet arrays@NiMo2S4 nanoflakes on Ni foam as a high-performance supercapacitor electrode. J Colloid Interface Sci 650:105–111

    Article  CAS  PubMed  Google Scholar 

  15. Li SS, Gao YQ, Li N et al (2021) Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ Sci 14(4):1897–1927

    Article  CAS  Google Scholar 

  16. Theerthagiri J, Senthil RA, Nithyadharseni P et al (2020) Recent progress and emerging challenges of transition metal sulfides based composite electrodes for electrochemical supercapacitive energy storage. Ceram Int 46(10):14317–14345

    Article  CAS  Google Scholar 

  17. Shinde PA, Chodankar NR, Kim HJ et al (2023) Ultrastable 1T-2H WS2 heterostructures by nanoarchitectonics of phosphorus-triggered phase transition for hybrid supercapacitors. ACS Energy Lett 8(10):4474–4487

    Article  CAS  Google Scholar 

  18. Li YN, Gong JW, Xing XL et al (2021) High-performance all-solid-state supercapacitor with binder-free binary transition metal sulfide array as cathode. Int J Energy Res 45(4):5517–5526

    Article  CAS  Google Scholar 

  19. Siwatch P, Sharma K, Manyani N et al (2023) Three-dimensional hollow sulphide nanocomposites for supercapacitor electrodes. Curr Appl Phys 53:25–38

    Article  ADS  Google Scholar 

  20. Hasan S, Reaz AH, Das S et al (2022) CuCo2S4-MoS2 nanocomposite: a novel electrode for high-performance supercapacitors. J Mater Chem C 10(20):7980–7996

    Article  CAS  Google Scholar 

  21. Wang SL, Zhou ZY, Wen B et al (2023) Controlled growth of Co9S8 nanoparticle-embedded carbon nanosheets/carbon nanofibers toward high-performance sodium storage. J Colloid Interface Sci 648:644–653

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Luo JC, Zhou XY, Dong YX et al (2022) Sulfur-deficient flower-like zinc cobalt sulfide microspheres as an advanced electrode material for high-performance supercapacitors. J Colloid Interface Sci 628:631–641

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Xu XM, Shao ZP et al (2020) Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application. Energy Storage Mater 26:1–22

    Article  Google Scholar 

  24. Kang MX, Zhou S, Xiong LH et al (2019) Research progress of metal organic framework in supercapacitors. J Mater Eng 47(8):1–12

    Google Scholar 

  25. Shinde PA, Seo Y, Lee S et al (2020) Layered manganese metal-organic framework with high specific and areal capacitance for hybrid supercapacitors. Chem Eng J 387:122982

    Article  CAS  Google Scholar 

  26. Xiao ZY, Liu J, Wang L et al (2023) Construction of double-shell basic cobalt/nickel carbonate microspheres via MOFs etching strategy for boosting aqueous supercapacitor performances. ACS Appl Energy Mater 6(18):9108–9117

    Article  Google Scholar 

  27. Yao JN, Ji YJ, Lu FX et al (2023) Facile route to high-mass-loading amorphous NiCo-MOFs as high-performance electrode materials for asymmetric supercapacitors. New J Chem 47(9):4182–4186

    Article  CAS  Google Scholar 

  28. Zhao ZM, Duan HY, Pang H et al (2021) A hierarchically porous ZIF@LDH core-shell structure for high-performance supercapacitors. Chem Asian J 16(7):845–849

    Article  CAS  PubMed  Google Scholar 

  29. Zheng GX, Chen MH, Yin JH et al (2019) Metal organic frameworks derived nano materials for energy storage application. Int J Electrochem Sci 14(3):2345–2362

    Article  CAS  Google Scholar 

  30. Li J, Shao M, Yan YM et al (2023) MOF-derived ultrathin NiCo-S nanosheet hybrid array electrodes prepared on nickel foam for high-performance supercapacitors. Nanomaterials 13(7):1229

  31. Liu GX, Zhang HY, Li J et al (2019) Ultrathin nanosheets-assembled NiCo2S4 nanocages derived from ZIF-67 for high-performance supercapacitors. J Mater Sci 54(13):9666–9678

    Article  CAS  ADS  Google Scholar 

  32. Wang JQ, Quan YL, Wang GX et al (2021) 3D hollow cage copper cobalt sulfide derived from metal-organic frameworks for high-performance asymmetric supercapacitors. Crystengcomm 23(42):7385–7396

    Article  CAS  Google Scholar 

  33. Akhtar A, Mishra S, Saha SK (2020) Charge transport mechanism in reduced graphene oxide/polypyrrole based ultrahigh energy density supercapacitor. J Mater Sci Mater Electron 31(14):11637–11645

    Article  CAS  Google Scholar 

  34. Yao JJ, Li FZ, Zhou RY et al (2023) Phosphorous-doped carbon nanotube/reduced graphene oxide aerogel cathode enabled by pseudocapacitance for high energy and power zinc-ion hybrid capacitors. Chin Chem Lett 35(2):108354

    Article  Google Scholar 

  35. Israr M, Iqal J, Arshad A et al (2020) Graphene triggered enhancement in visible-light active photocatalysis as well as in energy storage capacity of (CFO)1-x (GNPs)x nanocomposites. Ceram Int 46(3):2630–2639

    Article  CAS  Google Scholar 

  36. Tan HJ, Xiao D, Navik R et al (2021) Facile fabrication of polyaniline/pristine graphene-bacterial cellulose composites as high-performance electrodes for constructing flexible all-solid-state supercapacitors. ACS Omega 6(17):11427–11435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Majumdar S, Sen P, Ray R (2022) High-performance graphene oxide-grafted chitosan-starch solid biopolymer electrolytes for flexible hybrid supercapacitors. J Solid State Electrochem 26(2):527–547

    Article  CAS  Google Scholar 

  38. Wu S, Xu X, Sun X et al (2023) ZIF-67 derived rGO/NiCo2S4 electrode materials prepared by hydrothermal method for asymmetric supercapacitors. Diam Relat Mater 136:109946

  39. Sundriyal S, Shrivastav V, Kaur H et al (2018) High-performance symmetrical supercapacitor with a combination of a ZIF-67/rGO composite electrode and a redox additive electrolyte. ACS Omega 3(12):17348–17358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Huang J, Xiao YJ et al (2019) Hierarchical nickel cobalt sulfide nanosheet on MOF-derived carbon nanowall arrays with remarkable supercapacitive performance. Carbon 147:146–153

    Article  CAS  Google Scholar 

  41. Zhao XY, Ma QX, Tao K et al (2021) ZIF-derived porous CoNi2S4 on intercrosslinked polypyrrole tubes for high-performance asymmetric supercapacitors. ACS Appl Energy Mater 4(4):4199–4207

    Article  CAS  Google Scholar 

  42. Zhuang ZW, Wang Y, Chen Z et al (2020) MOF derived high-density atomic platinum heterogeneous catalyst for C-H bond activation. Mater Chem Front 4(4):1158–1163

    Article  CAS  Google Scholar 

  43. Obodo RM, Nwanya AC, Arshad M et al (2020) Conjugated NiO-ZnO/GO nanocomposite powder for applications in supercapacitor electrodes material. Int J Energy Res 44(4):3192–3202

    Article  CAS  Google Scholar 

  44. Ding MJ, Wei ZQ, Huang SP et al (2022) Electrochemical properties of NiCo2S4/rGO nanocomposites synthesized by hydrothermal method. Curr Nanosci 18(3):399–407

    Article  CAS  ADS  Google Scholar 

  45. Askari MB, Salarizadeh P, Seifi M et al (2020) Binary mixed molybdenum cobalt sulfide nanosheets decorated on rGO as a high-performance supercapacitor electrode. Nanotechnology 31(27):275406

  46. Wang JY, Liu YZ, Cheng M et al (2019) Hierarchical porous carbon-graphene-based lithium-sulfur batteries. Electrochim Acta 318:161–168

    Article  CAS  Google Scholar 

  47. Chen HC, Jiang SP, Xu BH et al (2019) Sea-urchin-like nickel-cobalt phosphide/phosphate composites as advanced battery materials for hybrid supercapacitors. J Mater Chem A 7(11):6241–6249

    Article  CAS  Google Scholar 

  48. Yan HL, Zhu KJ, Liu X et al (2020) Ultra-thin NiS nanosheets as advanced electrode for high energy density supercapacitors. RSC Adv 10(15):8760–8765

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  49. Deepalakshmi S, Revathy MS, Marnadu R et al (2023) Fabrication of hierarchical NiCo2S4@GO nano-sponge electrode: as advanced electrode for supercapacitor applications. J Mater Sci Mater Electron 34(12):1007

  50. Liu H, Guo H, Yue LG et al (2019) Metal-organic frameworks-derived NiS2/CoS2/N-doped carbon composites as electrode materials for asymmetric supercapacitor. Chemelectrochem 6(14):3764–3773

    Article  CAS  Google Scholar 

  51. Hoa NV, Dat PA, Chi NV et al (2021) A hierarchical porous aerogel nanocomposite of graphene/NiCo2S4 as an active electrode material for supercapacitors. J Sci-Adv Mater Dev 6(4):569–577

    CAS  Google Scholar 

  52. Shi ZQ, Shen XT, Zhang Z et al (2021) Hierarchically urchin-like hollow NiCo2S4 prepared by a facile template-free method for high-performance supercapacitors. J Colloid Interface Sci 604:292–300

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Xu XT, Tian XD, Li X et al (2019) Structural and chemical synergistic effect of NiCo2S4 nanoparticles and carbon cloth for high performance binder-free asymmetric supercapacitors. Appl Surf Sci 465:635–642

    Article  CAS  ADS  Google Scholar 

  54. Zhang DY, Gao SY, Zhang JW et al (2021) Facile solid-phase synthesis of layered NiS/rGO nanocomposite for high-performance hybrid supercapacitor. J Power Sour 514:230590

Download references

Funding

Hong Liu First-class Disciplines Development Program of Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Contributions

JW completed the concept, writing, review and editing of this work. ZQ has completed the methodology of this work. WC The disposal data of this work has been completed. MP has completed the investigation of this work. CG Completed the verification of this work. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Zhi-qiang Wei.

Ethics declarations

Ethical approval

There are no ethical implications in this study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 3175 kb)

ESM 2

(XLSX 2108 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Jw., Wei, Zq., Wang, C. et al. NiCo2S4/rGO composite electrode material derived from Co-based MOFs for hybrid supercapacitors. Ionics 30, 1723–1733 (2024). https://doi.org/10.1007/s11581-024-05399-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05399-3

Keywords

Navigation