Skip to main content
Log in

Stable polyaniline/sodium alginate/graphene oxide composite hydrogels as binder-free supercapacitor electrodes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Conducting hydrogels are considered one of the key materials for the fabrication of supercapacitors. But it is a significant requirement for the design of rational structures and simultaneous realization of high electrochemical performance and mechanical strength. Herein, the stable polyaniline/sodium alginate/graphene oxide composite hydrogels are prepared by aniline polymerization in the aqueous solution containing graphene oxide (GO) and sodium alginate (SA). Owing to the multiple interactions among polyaniline (PANi), GO, and SA, three components are intertwined, which leads to the production of the three-dimensional hydrogel network and endows the hydrogel with relatively high mechanical strength and electrochemical performance. The obtained PANi/SA/GO hydrogel exhibits high mechanical strength of more than 50 kPa and displays excellent specific capacitance of 457 F g−1 at 0.5 A g−1 and long-term cyclability. Moreover, the fabricated supercapacitor composed of PANi/SA/GO hydrogel possesses satisfied flexibility and outstanding capacitance. This work presents a simple integration route for the synthesis of conducting hydrogels with outstanding performance in the field of supercapacitors for flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang L, Liu D, Wu ZS, Lei W (2020) Micro-supercapacitors powered integrated system for flexible electronics. Energy Storage Mater 32:402–417. https://doi.org/10.1016/j.ensm.2020.05.025

    Article  Google Scholar 

  2. Vannathan AA, Kella T, Shee D, Mal SS (2022) Investigations of redox-active polyoxomolybdate embedded polyaniline-based electrode material for energy application. Ionics 28:1295–1310. https://doi.org/10.1007/s11581-021-04390-6

    Article  CAS  Google Scholar 

  3. Das P, Wu ZS, Li F, Liang J, Cheng HM (2019) Two-dimensional energy materials: opportunities and perspectives. Chem Soc Rev 22:15–17. https://doi.org/10.1016/J.ENSM.2019.03.014

    Article  Google Scholar 

  4. Poonam SK, Arora A, Tripathi SK (2019) Review of supercapacitors: materials and devices. J Energy Storage 21:801–825. https://doi.org/10.1016/j.est.2019.01.010

    Article  Google Scholar 

  5. Abdah MAAM, Azman NHN, Kulandaivalu S, Sulaiman Y (2020) Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater Des 186:108199. https://doi.org/10.1016/j.matdes.2019.108199

    Article  CAS  Google Scholar 

  6. She X, Zhang X, Liu J, Li L, Yu X, Huang Z, Shang S (2015) Microwave-assisted synthesis of Mn3O4 nanoparticles@reduced graphene oxide nanocomposites for high performance supercapacitors. Mater Res Bull 70:945–950. https://doi.org/10.1016/j.materresbull.2015.06.044

    Article  CAS  Google Scholar 

  7. Yang Y, Liu Y, Li Y, Deng B, Yin B, Yang M (2020) Design of compressible and elastic N-doped porous carbon nanofiber aerogels as binder-free supercapacitor electrodes. J Mater Chem A 8:17257–17265. https://doi.org/10.1039/D0TA05423B

    Article  CAS  Google Scholar 

  8. Wei D, Zhu J, Luo L, Huang H, Li L, Yu X (2020) Fabrication of poly(vinyl alcohol)-graphene oxide-polypyrrole composite hydrogel for elastic supercapacitors. J Mater Sci 55:11779–11791. https://doi.org/10.1007/s10853-020-04833-x

    Article  CAS  Google Scholar 

  9. Liu Y, Luo S, Yan S, Feng J, Yi T (2020) Green synthesis of reduced graphene oxide as high-performance electrode materials for supercapacitors. Ionics 26:415–422. https://doi.org/10.1007/s11581-019-03185-0

    Article  CAS  Google Scholar 

  10. Wang T, Li L, Tian X, Jin H, Tang K, Hou S, Zhou H, Yu X (2019) 3D-printed interdigitated graphene framework as superior support of metal oxide nanostructures for remarkable micro-pseudocapacitors. Electrochim Acta 319:245–252. https://doi.org/10.1016/j.electacta.2019.06.163

    Article  CAS  Google Scholar 

  11. Sikdar A, Majumdar A, Dutta P, Borah M, Kim SO, Maiti UN (2020) Ultra-large area graphene hybrid hydrogel for customized performance supercapacitors: high volumetric, areal energy density and potential wearability. Electrochim Acta 332:135492. https://doi.org/10.1016/j.electacta.2019.135492

    Article  CAS  Google Scholar 

  12. Maiti UN, Lim J, Lee KE, Lee WJ, Kim SO (2014) Dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv Mater 26:615–619. https://doi.org/10.1002/adma.201303503

    Article  CAS  PubMed  Google Scholar 

  13. Zhao C, Jia X, Shu K, Yu C, Wallace GG, Wang C (2020) Conducting polymer composites for unconventional solid-state supercapacitors. J Mater Chem A 8:4677–4699. https://doi.org/10.1039/C9TA13432H

    Article  CAS  Google Scholar 

  14. Tian Y, Yang C, Song X, Liu J, Zhao L, Zhang P, Gao L (2019) Engineering the volumetric effect of polypyrrole for auto deformable supercapacitor. Chem Eng J 374:59–67. https://doi.org/10.1016/j.cej.2019.05.153

    Article  CAS  Google Scholar 

  15. Veerakumar P, Sangili A, Manavalan S, Thanasekaran P, Lin KC (2020) Research progress on porous carbon supported metal/metal oxide nanomaterials for supercapacitor electrode applications. Ind Eng Chem Res 59:6347–6374. https://doi.org/10.1021/acs.iecr.9b06010

    Article  CAS  Google Scholar 

  16. Zhu J, Xu Y, Wang J, Wang J, Bai Y, Du X (2015) Morphology controllable nano-sheet polypyrrole-graphene composites for high-rate supercapacitor. Phys Chem Chem Phys 17:19885–19894. https://doi.org/10.1039/C5CP02710A

    Article  CAS  PubMed  Google Scholar 

  17. Wu J, Zhang QE, Wang J, Huang X, Bai H (2018) A self assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high performance supercapacitors. Energy Environ Sci 11:1280–1286. https://doi.org/10.1039/C8EE00078F

    Article  CAS  Google Scholar 

  18. Qiu H, Han X, Qiu F, Yang J (2016) Facile route to covalently jointed graphene/polyaniline composite and it’s enhanced electrochemical performances for supercapacitors. Appl Surf Sci 376:261–268. https://doi.org/10.1016/j.apsusc.2016.03.018

    Article  CAS  Google Scholar 

  19. Liu Y, Xiong H, Yu X, Huang H, Li L, Ji J, Huang Y, Xu M (2018) Interfacial fabrication of polypyrrole/sulfonated reduced graphene oxide nanocomposites for electrochemical capacitors. Polym Composites 39:E378–E385. https://doi.org/10.1002/pc.24458

    Article  CAS  Google Scholar 

  20. Liu Y, Zhang B, Xu Q, Hou Y, Seyedin S, Qin S, Wallace GG, Beirne S, Razal JM, Chen J (2018) Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Adv Funct Mater 28:1706592. https://doi.org/10.1002/adfm.201706592

    Article  CAS  Google Scholar 

  21. Zhang W, Fang P, Chen J, Sun Z, Zhao B (2019) Electrically conductive hydrogels for flexible energy storage systems. Prog Polym Sci 88:220–240. https://doi.org/10.1016/j.progpolymsci.2018.09.001

    Article  CAS  Google Scholar 

  22. Bo J, Luo X, Huang H, Li L, Lai W, Yu X (2018) Morphology-controlled fabrication of polypyrrole hydrogel for solid-state supercapacitor. J Power Sources 407:105–111. https://doi.org/10.1016/j.jpowsour.2018.10.064

    Article  CAS  Google Scholar 

  23. Liu Z, Chen J, Zhan Y, Liu B, Xiong C, Yang Q, Hu GH (2019) Fe3+ cross-linked polyaniline/cellulose nanofibril hydrogels for high-performance flexible solid-state supercapacitors. ACS Sustainable Chem Eng 7:17653–17660

    Article  CAS  Google Scholar 

  24. Chao Y, Ge Y, Chen Z, Cui X, Zhao C, Wang C, Wallace GG (2021) One-pot hydrothermal synthesis of solution-processable MoS2/PEDOT:PSS composites for high-performance supercapacitors. ACS Appl Mater Interfaces 13:7285–7296. https://doi.org/10.1021/acsami.0c21439

    Article  CAS  PubMed  Google Scholar 

  25. Alcaraz-Espinoaz JJ, Ramos-Sánchez G, Sierra-Uribe JH, González I (2021) Supramolecular assembly of nanostructured conducting polymer hydrogels by hydrotropic agents for outstanding supercapacitive energy storage. ACS Appl Energy Mater 4:9099–9110. https://doi.org/10.1021/acsaem.1c01385

    Article  CAS  Google Scholar 

  26. Gao S, Zhang L, Qiao Y, Dong P, Shi J, Cao S (2016) Electrodeposition of polyaniline on three-dimensional graphene hydrogel as a binder-free supercapacitor electrode with high power and energy densities. RSC Adv 6:58854–58861. https://doi.org/10.1039/c6ra06263f

    Article  CAS  Google Scholar 

  27. Zhao W, He DW, Wang YS, Hu Y, Du X, Hao X (2015) Effects of acid dopants on the capacitance of polyaniline by using graphene hydrogels as substrates. RSC Adv 5:98241–98247. https://doi.org/10.1039/C5RA16348J

    Article  CAS  Google Scholar 

  28. Sikdar A, Deb SK, Gogoi A, Majumdar A, Dutta P, Reddy KA, Maiti UN (2020) Polyaniline-graphene hydrogel hybrids via diffusion controlled surface polymerization for high performance supercapacitors. ACS Appl Nano Mater 3:12278–12287. https://doi.org/10.1021/acsanm.0c02749

    Article  CAS  Google Scholar 

  29. Wang J, Li BY, Ni T, Dai TY, Lu Y (2015) One-step synthesis of iodine doped polyaniline-reduced graphene oxide composite hydrogel with high capacitive properties. Comp Sci Technol 109:12–17. https://doi.org/10.1016/j.compscitech.2015.01.008

    Article  CAS  Google Scholar 

  30. Luo J, Zhong W, Zou Y, Xiong C, Yang W (2016) Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes. J Power Sources 319:73–81. https://doi.org/10.1016/j.jpowsour.2016.04.004

    Article  CAS  Google Scholar 

  31. Gupta A, Sardana S, Dalal J, Lather S, Maan AS, Tripathi R, Punia R, Singh K, Ohlan A (2020) Nanostructured polyaniline/graphene/Fe2O3 composites hydrogel as a high-performance flexible supercapacitor electrode material. ACS Appl Energy Mater 3:6434–6446. https://doi.org/10.1021/acsaem.0c00684

    Article  CAS  Google Scholar 

  32. Han X, Liu Y, Xiong L, Huang H, Zhang Q, Li L, Yu X, Wei L (2019) Facile assembly of polyaniline/graphene oxide composite hydrogels as adsorbent for Cr(VI) removal. Polym Comp 40:E1777–E1785. https://doi.org/10.1002/pc.25161

    Article  CAS  Google Scholar 

  33. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  34. Cai Z, Xiong H, Zhu Z, Huang H, Li L, Huang Y, Yu X (2017) Electrochemical synthesis of graphene/polypyrrole nanotube composites for multifunctional applications. Synthetic Met 227:100–105. https://doi.org/10.1016/j.synthmet.2017.03.012

    Article  CAS  Google Scholar 

  35. Jin H, Feng X, Li J, Li M, Xia Y, Yuan Y, Yang C, Dai B, Lin Z, Wang J, Lu J, Wang S (2019) Heteroatom-doped porous carbon materials with unprecedented high volumetric capacitive performance. Angew Chem Int Ed 58:2397–2401. https://doi.org/10.1002/anie.201813686

    Article  CAS  Google Scholar 

  36. Yang QY, Huang J, Tu JY, Wu KJ, Huang HB, Wang DW, Yao JL, Li L (2021) A micropore-dominant N, P, S-codoped porous carbon originating from hydrogel for high-performance supercapacitors mediated by phytic acid. Microporous Mesoporous Mater 316:110951. https://doi.org/10.1016/j.micromeso.2021.110951

    Article  CAS  Google Scholar 

  37. Dai T, Jia Y (2011) Supramolecular hydrogels of polyaniline-poly(styrene sulfonate) prepared in concentrated solutions. Polymer 52:2550–2558. https://doi.org/10.1016/j.polymer.2011.04.006

    Article  CAS  Google Scholar 

  38. Zhao Z, Wang H, Huang H, Li L, Yu X (2021) Graphene oxide/polypyrrole/polyaniline composite hydrogel synthesized by vapor-liquid interfacial method for supercapacitors. Colloids Surf A 626:127125. https://doi.org/10.1016/j.colsurfa.2021.127125

    Article  CAS  Google Scholar 

  39. Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48:487–493. https://doi.org/10.1016/j.carbon.2009.09.066

    Article  CAS  Google Scholar 

  40. Li Y, Zhao X, Xu Q, Zhang Q, Chen D (2011) Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors. Langmuir 27:6458–6463. https://doi.org/10.1021/la2003063

    Article  CAS  PubMed  Google Scholar 

  41. Liu X, Shang P, Zhang Y, Wang X, Fan Z, Wang B, Zheng Y (2014) Three-dimensional and stable polyaniline-grafted graphene hybrid materials for supercapacitor electrodes. J Mater Chem A 2:15273–15278. https://doi.org/10.1039/C4TA03077J

    Article  CAS  Google Scholar 

  42. Senthilkumar B, Sankar KV, Sanjeeviraja C, Selvan RK (2013) Synthesis and physico-chemical property evaluation of PANi-NiFe2O4 nanocomposite as electrodes for supercapacitors. J Alloys Compd 553:350–357. https://doi.org/10.1016/j.jallcom.2012.11.122

    Article  CAS  Google Scholar 

  43. Kumar NA, Choi HJ, Shin YR, Chang DW, Dai L, Baek JB (2012) Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano 6:1715–1723. https://doi.org/10.1021/nn204688c

    Article  CAS  PubMed  Google Scholar 

  44. Mujawar SH, Ambade SB, Battumur T, Ambade RB, Lee SH (2011) Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application. Electrochim Acta 56:4462–4466. https://doi.org/10.1016/j.electacta.2011.02.043

    Article  CAS  Google Scholar 

  45. Martins VHN, Siqueira NMS, Fonsaca JES, Domingues SH, Souza VHR (2021) Ternary nanocomposites of reduced graphene oxide, polyaniline, and iron oxide applied for energy storage. ACS Appl Nano Mater 4:5553–5563. https://doi.org/10.1021/acsanm.1c01036

    Article  CAS  Google Scholar 

  46. Yang Y, Hao Y, Yuan J, Niu L, Xia F (2014) In situ preparation of caterpillar-like polyaniline/carbon nanotube hybrids with core shell structure for high performance supercapacitors. Carbon 78:279–287. https://doi.org/10.1016/j.carbon.2014.07.004

    Article  CAS  Google Scholar 

  47. Yu M, Ma Y, Liu J, Li S (2015) Polyaniline nanocone arrays synthesized on three-dimensional graphene network by electrodeposition for supercapacitor electrodes. Carbon 87:98–105. https://doi.org/10.1016/j.carbon.2015.02.017

    Article  CAS  Google Scholar 

  48. Wen L, Li K, Liu J, Huang Y, Bu F, Zhao B, Xu Y (2017) Graphene/polyaniline@carbon cloth composite as a high-performance flexible supercapacitor electrode prepared by a one-step electrochemical co-deposition method. RSC Adv 7:7688–7693. https://doi.org/10.1039/C6RA27545A

    Article  CAS  Google Scholar 

  49. Liu F, Luo S, Liu D, Chen W, Huang Y, Dong L, Wang L (2017) Facile processing of free-standing polyaniline/SWCNT film as an integrated electrode for flexible supercapacitor application. ACS Appl Mater Interfaces 9:33791–33801. https://doi.org/10.1021/acsami.7b08382

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by Training Programs of Innovation and Entrepreneurship for Undergraduates, Graduate Innovative Fund of Wuhan Institute of Technology, Natural Science Foundation of Hubei Province (2021CFB507, 2021CFB169), the Hubei Provincial Department of Education Science and Technology Research Program (B2021098), and the Open Project of Key Laboratory of Green Chemical Process of Ministry of Education (GCX202107).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiayou Ji or Liang Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 192 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, X., Yang, F., Huang, H. et al. Stable polyaniline/sodium alginate/graphene oxide composite hydrogels as binder-free supercapacitor electrodes. Ionics 28, 5633–5641 (2022). https://doi.org/10.1007/s11581-022-04770-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04770-6

Keywords

Navigation