Skip to main content

Advertisement

Log in

Fabrication of poly(vinyl alcohol)–graphene oxide–polypyrrole composite hydrogel for elastic supercapacitors

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-performance elastic supercapacitors represent a promising kind of energy storage devices that can be employed in soft robotics and wearable electronics. The development of novel functional materials as supercapacitor electrode is still tremendously challenging. In the present work, the conductive polyvinyl alcohol–graphene oxide–polypyrrole (PVA–GO–PPy) composite hydrogels are fabricated through in situ polymerization of pyrrole in the presence of PVA and GO and subsequent freeze-thawing. Owing to the unique porous layered-wrinkle network and functional component of PVA–GO–PPy composite hydrogels, the as-prepared hydrogels exhibit lightweight, elasticity, compressibility, formability and softness. Furthermore, the mechanically robust and microstructured PVA–GO–PPy composite hydrogels are used to construct an elastic symmetric solid-state supercapacitor with good electrochemical performance. The device exhibits long-term compression/recovery elasticity under 50% strain, and even the volumetric capacitance retention is still about 81% when the strain is up to 80%. The excellent compression/recovery elasticity and good mechanical integrity of the high-performance supercapacitor based on PVA–GO–PPy composite hydrogel open up new opportunities for next-generation electronic devices in the practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Guo Y, Bae J, Zhao F, Yu G (2019) Functional hydrogels for next-generation batteries and supercapacitors. Trends Chem 1:335–348

    Article  Google Scholar 

  2. Peng Y, Yan B, Li Y, Lan J, Shi L, Ran R (2020) Antifreeze and moisturizing high conductivity PEDOT/PVA hydrogels for wearable motion sensor. J Mater Sci 55:1280–1291. https://doi.org/10.1007/s10853-019-03438-3

    Article  CAS  Google Scholar 

  3. Dudney NJ, Li J (2015) Using all energy in a battery. Science 347:131–132

    Article  CAS  Google Scholar 

  4. Zhang GZ, Chen YH, Deng YH, Wang CY (2017) A triblock copolymer design leads to robust hybrid hydrogels for high-performance flexible supercapacitors. ACS Appl Mater Interfaces 9:36301–36310

    Article  CAS  Google Scholar 

  5. Heydari H, Gholivand MB (2017) An all-solid-state asymmetric device based on a polyaniline hydrogel for a high energy flexible supercapacitor. New J Chem 41:237–244

    Article  CAS  Google Scholar 

  6. Li WW, Gao F, Wang XQ, Zhang N, Ma MM (2016) Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew Chem Int Ed 55:9196–9201

    Article  CAS  Google Scholar 

  7. Li WW, Lu H, Zhang N, Ma MM (2017) Enhancing the properties of conductive polymer hydrogels by freeze-thaw cycles for high-performance flexible supercapacitors. ACS Appl Mater Interfaces 9:20142–20149

    Article  CAS  Google Scholar 

  8. Song ZQ, Li WY, Ba Y, Sun ZH, Gao LF, Nawaz MH, Han DX, Niu L (2018) Enhanced pseudocapacitance and electrolyte-wettability of graphene hydrogels to tailor high mass loading all-solid-state supercapacitor with ultra-high volumetric energy density. Carbon 136:46–53

    Article  CAS  Google Scholar 

  9. Yang ZK, Qiu AD, Ma J, Chen MQ (2018) Conducting a-Fe2O3 nanorod/polyaniline/CNT gel framework for high performance anodes towards supercapacitors. Compos Sci Technol 156:231–237

    Article  CAS  Google Scholar 

  10. Zhu Y, Lu WP, Guo YC, Chen Y, Wu YX, Lu HJ (2018) Biocompatible, stretchable and mineral PVA-gelatin-nHAP hydrogel for highly sensitive pressure sensors. RSC Adv 8:36999–37007

    Article  CAS  Google Scholar 

  11. Wang W, Lai H, Cheng ZJ, Kang HJ, Wang YZ, Zhang HY, Wang JF, Liu YY (2018) Water-induced poly(vinyl alcohol)/carbon quantum dot nanocomposites with tunable shape recovery performance and fluorescence. J Mater Chem B 6:7444–7450

    Article  CAS  Google Scholar 

  12. Zhang W, Pan ZH, Yang FK, Zhao BX (2015) A facile in situ approach to polypyrrole functionalization through bioinspired catechols. Adv Funct Mater 25:1588–1597

    Article  CAS  Google Scholar 

  13. Zhang W, Zhou YK, Feng K, Trinidad J, Yu AP, Zhao BX (2015) Morphologically controlled bioinspired dopamine-polypyrrole nanostructures with tunable electrical properties. Adv Electron Mater 1:1500205

    Article  CAS  Google Scholar 

  14. Li PP, Jin ZY, Peng LL, Zhao F, Xiao D, Jin Y, Yu GH (2018) Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3d graphene/nanostructured conductive polymer hydrogels. Adv Mater 30:1800124

    Article  CAS  Google Scholar 

  15. Croisfelt FM, Tundisi LL, Ataide JA, Silveira E, Tambourgi EB, Jozala AF, Souto EM, Mazzola PG (2019) Modified-release topical hydrogels: a ten-year review. J Mater Sci 54:10963–10983. https://doi.org/10.1007/s10853-019-03557-x

    Article  CAS  Google Scholar 

  16. Zhou J, Wu D, Wu C, Wei G, Wei J, Tai Z, Xi S, Shen S, Wang Q (2019) Chen Y (2019) Diffusion-determined assembly of all-climate supercapacitors via bioinspired aligned gels. J Mater Chem A 7:19753–19760

    Article  CAS  Google Scholar 

  17. Zhao F, Shi Y, Pan LJ, Yu GH (2017) Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications. Acc Chem Res 50:1734–1743

    Article  CAS  Google Scholar 

  18. Lu H, Li Y, Chen Q, Chen Q, Chen L, Zhang N, Ma M (2019) Semicrystalline conductive hydrogels for high-energy and stable flexible supercapacitors. ACS Appl Energy Mater 2:8163–8172

    Article  CAS  Google Scholar 

  19. Wang D, Yu H, Qi D, Ramasamy M, Yao J, Tang F, Tan KC, Ni Q (2019) Supramolecular self-assembly of 3D conductive cellulose nanofiber aerogels for flexible supercapacitors and ultrasensitive. ACS Appl Mater Interfaces 11:24435–24446

    Article  CAS  Google Scholar 

  20. Tian K, Bae J, Bakarich SE, Yang CH, Gately RD, Spinks GM, Panhuis M, Sou ZG (2017) 3D printing of transparent and conductive heterogeneous hydrogel-elastomer systems. Adv Mater 29:1604827

    Article  CAS  Google Scholar 

  21. Yang CY, Zhang PF, Nautiyal A, Li SH, Liu N, Yin JL, Deng KL, Zhang XY (2019) Tunable three-dimensional nanostructured conductive polymer hydrogels for energy-storage applications. ACS Appl Mater Interfaces 11:4258–4267

    Article  CAS  Google Scholar 

  22. Shi Y, Pan LJ, Liu BR, Wang YQ, Cui Y, Bao ZN, Yu GH (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J Mater Chem A 2:6086–6091

    Article  CAS  Google Scholar 

  23. Wu D, Zhong WB (2019) A new strategy for anchoring a functionalized graphene hydrogel in a carbon cloth network to support a lignosulfonate/polyaniline hydrogel as an integrated electrode for flexible high areal capacitance supercapacitors. J Mater Chem A 7:5819–5830

    Article  CAS  Google Scholar 

  24. Bo JY, Luo XF, Huang HB, Li L, Lai W, Yu XH (2018) Morphology-controlled fabrication of polypyrrole hydrogel for solid-state supercapacitor. J Power Sour 407:105–111

    Article  CAS  Google Scholar 

  25. Zhao Y, Chen S, Hu J, Yu JL, Feng GC, Yang B, Li CH, Zhao N, Zhu CZ, Xu J (2018) Microgel-enhanced double network hydrogel electrode with high conductivity and stability for intrinsically stretchable and flexible all-gel-state supercapacitor. ACS Appl Mater Interfaces 10:19323–19330

    Article  CAS  Google Scholar 

  26. Pyarasani RD, Jayaramudu T, John A (2019) Polyaniline-based conducting hydrogels. J Mater Sci 54:974–996. https://doi.org/10.1002/adma.201504152

    Article  CAS  Google Scholar 

  27. Xu W, Mu B, Wang A (2018) All-solid-state high-energy asymmetric supercapacitor based on natural tubular fibers. J Mater Sci 53:11659–11670. https://doi.org/10.1007/s10853-018-2418-x

    Article  CAS  Google Scholar 

  28. Chen M, Chen J, Zhou W, Xu J, Wong C (2019) High-performance flexible and self-healable quasi solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte. J Mater Chem A 7:26524–26532

    Article  CAS  Google Scholar 

  29. Han J, Wang H, Yue Y, Mei C, Chen J, Huang C, Wu Q, Xu X (2019) A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network. Carbon 149:1–18

    Article  CAS  Google Scholar 

  30. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos S, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  31. Chakrabarti A, Lu J, Skrabutenas JC, Xu T, Xiao Z, Maguire JA, Hosmane NS (2011) Conversion of carbon dioxide to few-layer graphene. J Mater Chem 21:9491–9493

    Article  CAS  Google Scholar 

  32. Chen BS, Chen DJ, Li FM, Lin XF, Huang QT (2018) Graphitic porous carbon: efficient synthesis by a combustion method and application as a highly selective biosensor. J Mater Chem B 6:7684–7691

    Article  CAS  Google Scholar 

  33. Bagotia N, Mohite H, Tanaliya N, Sharma DK (2018) A comparative study of electrical, EMI shielding and thermal properties of graphene and multiwalled carbon nanotube filled polystyrene nanocomposites. Polym Compos 39:E1041–E1051

    Article  CAS  Google Scholar 

  34. Zhang J, Tian T, Chen YH, Niu YF, Tang J, Qin LC (2014) Synthesis of graphene from dry ice in flames and its application in supercapacitors. Chem Phys Lett 591:78–81

    Article  CAS  Google Scholar 

  35. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  36. Cai Z, Xiong HZ, Zhu ZN, Huang HB, Li L, Huang YN, Yu XH (2017) Electrochemical synthesis of graphene/polypyrrole nanotube composites for multifunctional applications. Synth Met 227:100–105

    Article  CAS  Google Scholar 

  37. Hu S, Zhou L, Tu L, Dai C, Fan L, Zhang K, Yao T, Chen J, Wang Z, Xing J, Fu R, Yu P, Tan G, Du J, Ning C (2019) Elastomeric conductive hybrid hydrogels with continuous conductive networks. J Mater Chem B 7:2389–2397

    Article  CAS  Google Scholar 

  38. Li LY, Xia KQ, Li L, Shang SM, Guo QZ, Yan GP (2012) Fabrication and characterization of free-standing polypyrrole/graphene oxide nanocomposite paper. J Nanopart Res 14:908

    Article  CAS  Google Scholar 

  39. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  40. Rao BV, Yadav P, Aepuru R, Panda HS, Ogale S, Kale SN (2015) Single-layer graphene-assembled 3D porous carbon composites with PVA and Fe3O4 nano-fillers: an interface-mediated superior dielectric and EMI shielding performance. Phys Chem Chem Phys 17:18353–18363

    Article  CAS  Google Scholar 

  41. Mallakpour S, Azimi F (2019) Using sonochemistry for the production of poly(vinyl alcohol)/MWCNT-vitamin B1 nanocomposites: exploration of morphology, thermal and mechanical properties. New J Chem 43:7502–7510

    Article  CAS  Google Scholar 

  42. Cobos M, De-La-Pinta I, Quindos G, Fernandez MJ, Fernandez MD (2019) One-step eco-friendly synthesized silver-graphene oxide/poly(vinyl alcohol) antibacterial nanocomposites. Carbon 150:101–116

    Article  CAS  Google Scholar 

  43. Yuan LY, Wan CY, Ye XG, Wu FH (2016) Facial synthesis of silver-incorporated conductive polypyrrole submicron spheres for supercapacitors. Electrochim, Acta 213:115–123

    Article  CAS  Google Scholar 

  44. Lipatov A, Guinel MJ, Muratov DS, Vanyushin VO, Wilson PM, Kolmakov A, Sinitskii A (2018) Low-temperature thermal reduction of graphene oxide: in situ correlative structural, thermal desorption, and electrical transport measurements. Appl Phys Lett 112:053103

    Article  CAS  Google Scholar 

  45. Jung I, Field DA, Clark NJ, Zhu Y, Yang D, Piner RD, Stankovich S, Dikin DA, Geisler H, Ventrice CA, Ruoff RS (2009) Reduction kinetics of graphene oxide determined by electrical transport measurements and temperature programmed desorption. J Phys Chem C 113:18480–18486

    Article  CAS  Google Scholar 

  46. Biswas S, Drzal LT (2010) Multi layered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem Mater 22:5667–5671

    Article  CAS  Google Scholar 

  47. Zhang DC, Zhang X, Chen Y, Yu P, Wang CH, Ma Y (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sour 196:5990–5996

    Article  CAS  Google Scholar 

  48. Wang K, Zhang X, Li C, Sun XZ, Meng QH, Ma YW, Wei ZX (2016) Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance. Adv Mater 27:7451–7457

    Article  CAS  Google Scholar 

  49. Pan LJ, Yu GH, Zhai DY, Lee HR, Zhao WT, Liu N, Wang HL, Tee BCK, Shi Y, Cui Y, Bao ZN (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci 109:9287–9292

    Article  CAS  Google Scholar 

  50. Gwon H, Kim HS, Lee KU, Seo DH, Park YC, Lee YS, Ahna BT, Kang K (2011) Flexible energy storage devices based on graphene paper. Energy Environ Sci 4:1277–1283

    Article  CAS  Google Scholar 

  51. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  Google Scholar 

  52. Yin B, Zhang S, Ren Q, Liu C, Ke K, Wang Z (2017) Elastic soft hydrogel supercapacitor. J Mater Chem A 5:24942–24950

    Article  CAS  Google Scholar 

  53. Fan ZJ, Yan J, Wei F, Zhi LJ, Ning GQ, Li TY, Wei F (2011) Asymmetric Supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375

    Article  CAS  Google Scholar 

  54. Wang HL, Liang YY, Mirfakhrai T, Chen Z, Casalongue HS, Dai HJ (2011) Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res 4:729–736

    Article  CAS  Google Scholar 

  55. Zhang YD, Hu ZG, Liang YR, Yang YY, An N, Li ZM, Wu HY (2015) Growth of 3D SnO2 nanosheets on carbon cloth as binder-free electrode for supercapacitors. J Mater Chem A 3:15057–15067

    Article  CAS  Google Scholar 

  56. Sankar KV, Selvan RK (2014) The preparation of MnFe2O4 decorated flexible graphene wrapped with PANI and its electrochemical performances for hybrid supercapacitors. RSC Adv 4:17555–17566

    Article  CAS  Google Scholar 

  57. Antiohos D, Pingmuang K, Romano MS, Beirne S, Romeo T, Aitchison P, Minett A, Wallace G, Phanichphant SJ (2013) Manganosite–microwave exfoliated graphene oxide composites for asymmetric supercapacitor device application. Electrochim Acta 101:99–108

    Article  CAS  Google Scholar 

  58. Tang Z, Tang CH, Gong H (2012) A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv Funct Mater 22:1272–1278

    Article  CAS  Google Scholar 

  59. Li L, Li R, Gai SL, Gao P, He F, Zhang ML, Chen YJ, Yang PP (2015) Hierarchical porous CNTs@NCS@MnO2 composites: rational design and high asymmetric supercapacitor performance. J Mater Chem A 3:15642–15649

    Article  CAS  Google Scholar 

  60. Kim M, Kim J (2014) Development of high power and energy density microsphere silicon carbide-MnO2 nanoneedles and thermally oxidized activated carbon asymmetric electrochemical supercapacitors. Phys Chem Chem Phys 16:11323–11336

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Li or Xianghua Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, D., Zhu, J., Luo, L. et al. Fabrication of poly(vinyl alcohol)–graphene oxide–polypyrrole composite hydrogel for elastic supercapacitors. J Mater Sci 55, 11779–11791 (2020). https://doi.org/10.1007/s10853-020-04833-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04833-x

Navigation