Skip to main content

Advertisement

Log in

Influence of the particle size of the Ni-rich cathode material on the electrochemical properties for all solid-state batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Recently, all-solid-state lithium ion batteries (ASLBs) have emerged as the next generation lithium ion batteries due to safety issue for electric vehicles and energy storage system. This application can be achieved through layered structure cathode material of Li[Ni0.8Co0.1Mn0.1]O2, (NCM811) with high specific capacity and composite solid electrolyte. The composite solid electrolyte is composed by poly ethylene oxide (PEO) based polymer solid electrolyte and garnet type oxide based Li6.75La3Zr2Al0.25O12, (LLZO-Al) solid electrolyte. Here, in this article, we describe the effect of improved electrochemical performance on the controlling particle size of Ni-rich cathode material for ASLBs with oxide-based solid electrolyte. Therefore, the structure and electrochemical performance of Ni-rich cathode material in ASLBs were investigated by using powder X-ray diffraction analysis, Brunauer–Emmett–Teller adsorption experiments, electrochemical impedance spectroscopy, and galvanostatic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li J, James F, Hawley W et al (2022) From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem Rev 122:903–956

    Article  CAS  PubMed  Google Scholar 

  2. Wu W, Wang M, Wang J et al (2020) Transition metal oxides as lithium-free cathodes for solid-state lithium metal batteries. Nano Energy 74:104867

    Article  CAS  Google Scholar 

  3. Kim D, Kim M, Yang S et al (2019) Fabrication and electrochemical characteristics of NCM-based all-solid lithium batteries using nano-grade garnet Al-LLZO powder. J Ind Eng Chem 71:445–451

    Article  CAS  Google Scholar 

  4. Heo K, Lee J, Im J, Kim M-Y, Kim H-S, Ahn D, Kim J, Lim J (2020) A composite cathode material encapsulated by amorphous garnet-type solid electrolyte and self-assembled la2(ni0.5li0.5)o4 nanoparticles for all-solid-state batteries. J Mater Chem A 8:22893–22906

    Article  CAS  Google Scholar 

  5. Reddy M, Julien C, Mauger A, Zaghib K (2020) Sulfide and oxide inorganic solid electrolytes for all-solid-state li batteries: a review. Nanomaterials 10:1606

    Article  CAS  PubMed Central  Google Scholar 

  6. Knauth P (2009) Inorganic solid Li ion conductors: an overview. Solid State Ionics 180:911–916

    Article  CAS  Google Scholar 

  7. Wang C, Fu K, Kammampata S et al (2020) Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem Rev 120:4257–4300

    Article  CAS  PubMed  Google Scholar 

  8. Zha W, Chen F, Yang D et al (2018) High-performance Li6.4La3Zr1.4Ta0.6O12/Poly(ethylene oxide)/Succinonitrile composite electrolyte for solid-state lithium batteries. J Power Sources 397:87–94

    Article  CAS  Google Scholar 

  9. Kim K, Yang S, Kim M et al (2016) Cubic phase behavior and lithium ion conductivity of Li7La3Zr2O12 prepared by co-precipitation synthesis for all-solid batteries. J Ind Eng Chem 36:279–283

    Article  CAS  Google Scholar 

  10. Rangasamy E, Wolfenstine J, Sakamoto J (2012) The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ionics 206:28–32

    Article  CAS  Google Scholar 

  11. Sudo R, Nakata Y, Ishiguro K et al (2014) Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid State Ionics 262:151–154

    Article  CAS  Google Scholar 

  12. Chen Y, Jiang Y, Chi S et al (2022) Understanding the lithium dendrites growth in garnet-based solid-state lithium metal batteries. J Power Sources 521:230921

  13. Feng J, Wang L, Chen Y et al (2021) PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Convergence 8:2

  14. Bakar R. Darvishi S, Li T et al (2022) Effect of polymer topology on microstructure, segmental dynamics, and ionic conductivity in PEO/PMMA-based solid polymer electrolytes. ACS Appl Polym Mater 4:179–190

  15. Jung Y, Lee S, Choi J et al (2015) All solid-state lithium batteries assembled with hybrid solid electrolytes. J Electrochem Soc 162:A704–A710

    Article  CAS  Google Scholar 

  16. Park M, Jung Y, Kim D (2018) Hybrid solid electrolytes composed of poly(1,4-butylene adipate) and lithium aluminum germanium phosphate for all-solid-state Li/LiNi0.6Co0.2Mn0.2O2 cells. Solid State Ionics 315:65–70

    Article  CAS  Google Scholar 

  17. Zhang W, Nie J, Li F et al (2018) A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 45:413–419

    Article  CAS  Google Scholar 

  18. Zheng J, Tang M, Hu Y (2016) Lithium ion pathway within Li 7 La 3 Zr 2 O 12 -polyethylene oxide composite electrolytes. Angew Chem 128:1–6

    Article  Google Scholar 

  19. Chen F, Yang D, Zha W et al (2017) Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. Electrochim Acta 258:1106–1114

    Article  CAS  Google Scholar 

  20. Wu W, Wei Z, Wang J et al (2021) Enabling high-energy flexible solid-state lithium ion batteries at room temperature. Chem Eng J 424:130335

    Article  CAS  Google Scholar 

  21. Oh D, Nam Y, Park K et al (2015) Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries. Adv Energy Mater 5:1500865

    Article  Google Scholar 

  22. Koerver R, Aygün I, Leichtweiß T et al (2017) Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem Mater 29:5574–5582

    Article  CAS  Google Scholar 

  23. Indu M, Alexander G, Sreejith O et al (2021) Lithium garnet-cathode interfacial chemistry: inclusive insights and outlook toward practical solid-state lithium metal batteries. Materials Today Energy 21:100804

  24. George V, Nataly C, Akira M et al (2018) Electrochemical performance of a garnet solid electrolyte based lithium metal battery with interface modification. J Mater Chem A 6:21018–21028

    Article  Google Scholar 

  25. Wang D, Sun Q, Luo J et al (2019) Mitigating the interfacial degradation in cathodes for high-performance oxide-based solid-state lithium batteries. ACS Appl Mater Interfaces 11:4954–4961

    Article  CAS  PubMed  Google Scholar 

  26. Rapulenyane N, Ferg E, Luo H (2018) High-performance Li1.2Mn0.6Ni0.2O2 cathode materials prepared through a facile one-pot co-precipitation process for lithium ion batteries. J Alloys Compd 762:272–281

    Article  CAS  Google Scholar 

  27. Cheralathan K, Kang N, Park H et al (2010) Preparation of spherical LiNi0.80Co0.15Mn0.05O2 lithium-ion cathode material by continuous co-precipitation. J Power Sources 195:1486–1494

    Article  CAS  Google Scholar 

  28. Hwang I, Lee C, Kim J, Yoon S (2012) Particle size effect of Ni-rich cathode materials on lithium ion battery performance. Mater Res Bull 47:73–78

    Article  CAS  Google Scholar 

  29. Zhang X, Jiang W, Mauger A et al (2010) Minimization of the cation mixing in Li1+x(NMC)1−xO2 as cathode material. J Power Sources 195:1292–1301

    Article  CAS  Google Scholar 

  30. Li H, Li J, Ma X, Dahn J, (2018) Synthesis of single crystal LiNi0.6Mn0.2Co0.2O2 with enhanced electrochemical performance for lithium ion batteries. J Electrochem Soc 165:A1038

  31. Sakuda A, Takeuchi T, Kobayashi H (2016) Electrode morphology in all-solid-state lithium secondary batteries consisting of LiNi1/3Co1/3Mn1/3O2 and Li2S-P2S5 solid electrolytes. Solid State Ionics 285:112–117

    Article  CAS  Google Scholar 

  32. Strauss F, Bartsch T, de Biasi L et al (2018) Impact of cathode material particle size on the capacity of bulk-type all-solid-state batteries. ACS Energy Lett 3:992–996

    Article  CAS  Google Scholar 

  33. Li H, Zhou P, Liu F et al (2019) Stabilizing nickel-rich layered oxide cathodes by magnesium doping for rechargeable lithium-ion batteries. Chem Sci 10:1374–1379

    Article  CAS  PubMed  Google Scholar 

  34. Strauss F, de Biasi L, Kim A et al (2019) Rational design of quasi-zero-strain NCM cathode materials for minimizing volume change effects in all-solid-state batteries. ACS Mater Lett 2:84–88

    Article  Google Scholar 

Download references

Funding

This research was financially supported by the Ministry of Trade, Industry and Energy, Korea, under the “Regional Innovation Cluster Development Program R&D, P0015313” supervised by the Korea Institute for Advancement of Technology (KIAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsub Lim.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Young-Woong Song and Kookjin Heo are co-first author and contributed equally.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, YW., Heo, K., Hwang, D. et al. Influence of the particle size of the Ni-rich cathode material on the electrochemical properties for all solid-state batteries. Ionics 28, 5421–5431 (2022). https://doi.org/10.1007/s11581-022-04756-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04756-4

Keywords

Navigation