Skip to main content

Advertisement

Log in

Enhanced cyclic stability of LiNi0.8Co0.1Mn0.1O2 (NCM811) by AlF3 coating via atomic layer deposition

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LiNi0.8Co0.1Mn0.1O2 (NCM811) is a promising cathode material for lithium-ion batteries due to its high energy density and low cost. However, NCM811 suffers from poor cycling stability and storage sensitivity to air and moisture. This study introduces an AlF3 protective layer onto the surface of NCM811 (NCM811-AlF3) by atomic layer deposition (ALD). After the AlF3 layer protection, the initial capacity of the quasi-solid-state pouch cell with the NCM811 cathode was significantly increased from 148 to 180 mAh g−1. In addition, NCM811-AlF3 maintained a capacity of 167 mAh g−1, which exceeded that of pristine NCM811 (126 mAh g−1) after 500 cycles. This excellent electrochemical performance is attributed to the conformal AlF3 protective layer that prevents the NCM811 from coming into direct contact with the electrolyte. In addition, the AlF3 protective layer can prevent the Li/Ni mixture and Li loss during cycling by limiting the lattice expansion. Moreover, it can suppress the generation of residual alkali on the NCM811 surface during storage, improving the interfacial stability between NCM811 and the electrolytes. These results indicate that AlF3 protective layer by ALD can be an effective method for improving the performance of high-energy–density cathode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu GL, Liu X, Daali A, Amine R, Chen Z, Amine K (2020) Challenges and strategies to advance high-energy nickel-rich layered lithium transition metal oxide cathodes for harsh operation. J Adv Funct Mater 30(46):2004748

    Article  CAS  Google Scholar 

  2. Pender JP, Jha G, Youn DH, Ziegler JM, Andoni I, Choi EJ, Heller A, Dunn BS, Weiss PS, Penner RM, Mullins CB (2020) Electrode degradation in lithium-ion batteries. J ACS Nano 14(2):1243

    Article  CAS  Google Scholar 

  3. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928

    Article  CAS  Google Scholar 

  4. Schipper F, Erickson EM, Erk C, Shin JY, Chesneau FF, Aurbach D (2016) Recent advances and remaining challenges for lithium ion battery cathodes. J Electrochem Soc 164(1):A6220

    Article  Google Scholar 

  5. Kim UH, Park GT, Conlin P, Ashburn N, Cho K, Yu YS, Shapiro DA, Maglia F, Kim SJ, Lamp P, Yoon CS, Sun YK (2021) Cation ordered Ni-rich layered cathode for ultra-long battery life. Energy Environ Sci 14(3):1573

    Article  CAS  Google Scholar 

  6. Phattharasupakun N, Wutthiprom J, Duangdangchote S, Sarawutanukul S, Tomon C, Duriyasart F, Tubtimkuna S, Aphirakaramwong C, Sawangphruk M (2021) Core-shell Ni-rich NMC-nanocarbon cathode from scalable solvent-free mechanofusion for high-performance 18650 Li-ion batteries. Energy Stor Mater 36:485

    Article  Google Scholar 

  7. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271

    Article  CAS  Google Scholar 

  8. Cao Y, Meng X, Elam JW (2016) Atomic layer deposition of LixAlyS solid-state electrolytes for stabilizing lithium-metal anodes. ChemElectroChem 3(6):858

    Article  CAS  Google Scholar 

  9. Chen Z, Qin Y, Amine K, Sun YK (2010) Role of surface coating on cathode materials for lithium-ion batteries. J Mater Chem 20(36):7606

    Article  CAS  Google Scholar 

  10. Yue P, Wang Z, Guo H, Xiong X, Li X (2013) A low temperature fluorine substitution on the electrochemical performance of layered LiNi0.8Co0.1Mn0.1O2−zFz cathode materials. Electrochim Acta 92:1

    Article  CAS  Google Scholar 

  11. Li J, Downie LE, Ma L, Qiu W, Dahn JR (2015) Study of the failure mechanisms of LiNi0.8Mn0.1Co0.1O2 cathode material for lithium ion batteries. J Electrochem Soc 162(7):A1401

    Article  CAS  Google Scholar 

  12. Haregewoin AM, Wotango AS, Hwang BJ (2016) Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy Environ Sci 9(6):1955

    Article  CAS  Google Scholar 

  13. Alvarado J, Schroeder MA, Pollard TP, Wang X, Lee JZ, Zhang M, Wynn T, Ding M, Borodin O, Meng YS, Xu K (2019) Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy Environ Sci 12(2):780

    Article  CAS  Google Scholar 

  14. Sun YK, Myung ST, Kim MH, Prakash J, Amine K (2005) Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. J Am Chem Soc 127(38):13411

    Article  CAS  Google Scholar 

  15. Xiong X, Wang Z, Guo H, Zhang Q, Li X (2013) Enhanced electrochemical properties of lithium-reactive V2O5 coated on the LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries at 60 °C. J Mater Chem A 1(4):1284

    Article  CAS  Google Scholar 

  16. Wise AM, Ban C, Weker JN, Misra S, Cavanagh AS, Wu Z, Li Z, Whittingham MS, Xu K, George SM, Toney MF (2015) Effect of Al2O3 coating on stabilizing LiNi0.4Mn0.4Co0.2O2 cathodes. Chem Mater 27(17):6146

    Article  CAS  Google Scholar 

  17. Chen Y, Zhang Y, Chen B, Wang Z, Lu C (2014) An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating. J Power Sources 256:20

    Article  CAS  Google Scholar 

  18. Hou P, Zhang H, Zi Z, Zhang L, Xu X (2017) Core–shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries. J Mater Chem A 5(9):4254

    Article  CAS  Google Scholar 

  19. Deng S, Li X, Ren Z, Li W, Luo J, Liang J, Liang J, Banis MN, Li M, Zhao Y, Li X, Wang C, Sun Y, Sun Q, Li R, Hu Y, Huang H, Zhang L, Lu S, Luo J, Sun X (2020) Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries. Energy Stor Mater 27:117

    Article  Google Scholar 

  20. Dong X, Yao J, Zhu W, Huang X, Kuai X, Tang J, Li X, Dai S, Shen L, Yang R, Gao L, Zhao J (2019) Enhanced high-voltage cycling stability of Ni-rich cathode materials via self-assembly of Mn-rich shells. J Mater Chem A 7(35):20262

    Article  CAS  Google Scholar 

  21. Zhou Y, Lee Y, Sun H, Wallas JM, George SM, Xie M (2017) Coating solution for high-voltage cathode: AlF3 atomic layer deposition for freestanding LiCoO2 electrodes with high energy density and excellent flexibility. ACS Appl Mater Interfaces 9(11):9614

    Article  CAS  Google Scholar 

  22. Sun YK, Lee MJ, Yoon CS, Hassoun J, Amine K, Scrosati B (2012) The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv Mater 24(9):1192

    Article  CAS  Google Scholar 

  23. Wang E, Zhao Y, Xiao D, Zhang X, Wu T, Wang B, Zubair M, Li Y, Sun X, Yu H (2020) Composite nanostructure construction on the grain surface of Li-rich layered oxides. Adv Mater 32(49):e1906070

    Article  Google Scholar 

  24. Shapira A, Tiurin O, Solomatin N, Auinat M, Meitav A, Ein EY (2018) Robust AlF3 atomic layer deposition protective coating on LiMn1.5Ni0.5O4 particles: an advanced Li-ion battery cathode material powder. ACS Appl Energy Mater 1(12):6809

    Article  CAS  Google Scholar 

  25. Lee Y, DuMont JW, Cavanagh AS, George SM (2015) Atomic layer deposition of AlF3 using trimethylaluminum and hydrogen fluoride. J Phys Chem C 119(25):14185

    Article  CAS  Google Scholar 

  26. Yahya MA, Quinton LW (2022) Reduction of capacity fading in high-voltage NMC batteries with the addition of reduced graphene oxide. Materials 15:2146

    Article  Google Scholar 

  27. Franziska F, Benjamin S, Anna TSF, Karin K, Sarah JD, Christoph E, Michele P, Hubert AG (2019) Capacity fading mechanisms of NCM-811 cathodes in lithium-ion batteries studied by x-ray diffraction and other diagnostics. J Electrochem Soc 166(15):A3760–A3774

    Article  Google Scholar 

  28. Tan X, Zhang M, Li J, Zhang D, Yan Y, Li Z (2020) Recent progress in coatings and methods of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials: A short review. Ceram Int 46(14):21888

    Article  CAS  Google Scholar 

  29. Chen G, Peng B, Han R, Chen N, Wang Z, Wang Q (2020) A robust carbon coating strategy toward Ni-rich lithium cathodes. Ceram Int 46(13):20985

    Article  CAS  Google Scholar 

  30. Zhang Z, Zhou P, Meng H, Chen C, Cheng F, Tao Z, Chen J (2017) Amorphous Zr(OH)4 coated LiNi0.915Co0.075Al0.01O2 cathode material with enhanced electrochemical performance for lithium ion batteries. J Energy Chem 26(3):481

    Article  Google Scholar 

  31. David L, Dahlberg K, Mohanty D, Ruther RE, Huq A, Chi M, An SJ, Mao C, King DM, Stevenson L, Wood DL (2019) Unveiling the role of Al2O3 in preventing surface reconstruction during high-voltage cycling of lithium-ion batteries. ACS Appl Energy Mater 2(2):1308

    Article  CAS  Google Scholar 

  32. Darapaneni P, Mane AU, Turczynski A, Elam JW (2021) Elucidating the redox behavior during atomic layer deposition on lithium-ion battery cathode materials. Chem Mater 33(20):8079

    Article  CAS  Google Scholar 

  33. Li W, Erickson EM, Manthiram A (2020) High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat Energy 5(1):26

    Article  CAS  Google Scholar 

  34. Shi Y, Zhang M, Meng YS, Chen Z (2019) Ambient-pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2(0 < x < 1) via eutectic solutions for direct regeneration of lithium‐ion battery cathodes. Adv Energy Mater 9(20):1900454

    Article  Google Scholar 

  35. Dong S, Zhou Y, Hai C, Zeng J, Sun Y, Shen Y, Li X, Ren X, Qi G, Zhang X, Ma L (2019) Ultrathin CeO2 coating for improved cycling and rate performance of Ni-rich layered LiNi0.7Co0.2Mn0.1O2 cathode materials. Ceram Int 45(1):144

    Article  CAS  Google Scholar 

  36. He T, Lu Y, Su Y, Bao L, Tan J, Chen L, Zhang Q, Li W, Chen S, Wu F (2018) Sufficient utilization of zirconium ions to improve the structure and surface properties of nickel-rich cathode materials for lithium-ion batteries. Chemsuschem 11(10):1639

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored in part by the National Natural Science Foundation of China (No. 51902119). The authors thank Liepu Technology Center, Sci-go Instrument Testing Platform, and Pirian Test Center for their technical support in our research by SEM, TEM and XPS characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuyu Li or Ming Xie.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Li, Y., Zhang, X. et al. Enhanced cyclic stability of LiNi0.8Co0.1Mn0.1O2 (NCM811) by AlF3 coating via atomic layer deposition. Ionics 28, 4547–4554 (2022). https://doi.org/10.1007/s11581-022-04691-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04691-4

Keywords

Navigation