Skip to main content
Log in

Metal organic framework (MOF)–derived iron oxide@nitrogen–doped carbon nanocomposites as anode materials for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Iron oxide (Fe2O3) has shown great potential to substitute carbon-based anode materials for lithium-ion batteries because of its high theoretical specific capacity. However, its huge volume change during the lithiation and de-lithiation processes has restricted its extensive application. Herein, we design a nitrogen-doped carbon-coated iron oxide (Fe2O3@NC) from Material of Institute Lavoisier (MIL)-53 (Fe) by a solvothermal method. Nitrogen-doped carbon can release the expansion stress of Fe2O3 to ensure the structural integrity and ameliorate electronic conductivity. Therefore, Fe2O3@NC displays a specific capacity of 875.4 mAh g−1 at 100 mA g−1 after 100 cycles and a good cycling stability of 342 mAh g−1 at a high rate of 500 mA g−1 in the best case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bruce P, Freunberger S, Hardwick L, Tarascon J (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29

    Article  CAS  Google Scholar 

  2. Yang Y, Qu X, Zhang X, Liu Y, Hu J, Chen J, Gao M, Pan H (2020) Higher than 90% initial Coulombic efficiency with staghorn-coral-like 3D porous LiFeO2-x as anode materials for Li-ion batteries. Adv Mater 32(22):1908285

  3. Mu G, Mu D, Wu B, Ma C, Bi J, Zhang L, Yang H, Wu F (2019) Microsphere-like SiO2/MXene hybrid material enabling high performance anode for lithium-ion batteries. Small 16(3):1905430

  4. Wei T, Zhang Z, Wang Z, Zhang Q, Ye Y, Lu J, Rahman Z, Zhang Z (2020) Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/succinonitrile for high-performance solid-state lithium metal batteries. ACS Appl Energy Mater 3(9):9428–9435

    Article  CAS  Google Scholar 

  5. Yu X, Zhao G, Liu C, Huang H, Shen X, Zhang N (2021) A material of hierarchical interlayer-expanded MoS2 nanosheets/hollow N-doped carbon nanofibers as a promising Li+/Mg2+ co-intercalation host. J Mater Chem A 9(19):11545–11552

    Article  CAS  Google Scholar 

  6. Pu K, Zhang K, Guo K, Min B, Chen Q, Wang Y (2021) Firmly coating carbon nanoparticles onto titanium as high performance anodes in microbial fuel cells. Electrochim Acta 399:139416

  7. Yang X, Wei T, Li J, Sheng N, Zhu P, Sha J, Wang T, Lan Y (2017) Polyoxometalate-incorporated metallapillararene/metallacalixarene metal-organic frameworks as anode materials for lithium-ion batteries. Inorg Chem 56(14):8311–8318

    Article  CAS  PubMed  Google Scholar 

  8. Shen Y, Xue H, Wang S, Wang Z, Zhang D, Yin D, Wang L, Cheng Y (2021) A highly promising high-nickel low-cobalt lithium layered oxide cathode material for high-performance lithium-ion batteries. J Colliod Interface Sci 597:334–344

    Article  CAS  Google Scholar 

  9. Shen Y, Yao X, Wang S, Zhang D, Yin D, Wang L, Cheng Y (2021) Gospel for improving the lithium storage performance of high-voltage high-nickel low-cobalt layered oxide cathode materials. Acs Appl Mater Interfaces 13:58871–58884

    Article  CAS  PubMed  Google Scholar 

  10. Shen Y, Cao Z, Wu Y, Cheng Y, Xue H, Zou Y, Liu G, Yin D, Cavallo L, Wang L, Ming J (2020) Catalysis of silica-based anode (de-)lithiation: compositional design within a hollow structure for accelerated conversion reaction kinetics. J Mater Chem A 8:12306–12313

    Article  CAS  Google Scholar 

  11. Zhang L, Zhang Y, Han Y, Yang L, Zou G, Zhao H, Hou H, Gu G (2021) Bead-milling and recrystallization from natural marmatite to Fe-doping ZnS-C materials for lithium-ion battery anodes. Electrochim Acta 399:139430

  12. Yoshio M, Wang H, Fukuda K, Umeno T, Dimov N, Ogumi Z (2002) Carbon-coated Si as a lithium-ion battery anode material. J Electrochem Soc 149(12):A1598–A1603

    Article  CAS  Google Scholar 

  13. Zhang M, Wei T, Zhang A, Li S, Shen F, Dong L, Li D, Lan Y (2017) Polyoxomolybdate-polypyrrole/reduced graphene oxide nanocomposite as high-capacity electrodes for lithium storage. ACS Omega 2(9):5684–5690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yao G, Niu P, Li Z, Xu Y, Wei L, Niu H, Yang Y, Zheng F, Chen Q (2021) Construction of flexible V3S4@CNF films as long-term stable anodes for sodium-ion batteries. Chem Eng J 423:130229

    Article  CAS  Google Scholar 

  15. Xu Y, Wang C, Niu P, Li Z, Wei L, Yao G, Zheng F, Chen Q (2021) Tuning the nitrogen-doping configuration in carbon materials via sulfur doping for ultrastable potassium ion storage. J Mater Chem A 9:16150–16159

    Article  CAS  Google Scholar 

  16. Xu S, Cai L, Niu P, Li Z, Wei L, Yao G, Wang C, Zheng F, Chen Q (2021) The creation of extra storage capacity in nitrogen-doped porous carbon as high-stable potassium-ion battery anodes. Carbon 178:256–264

    Article  CAS  Google Scholar 

  17. Chu K, Zhang X, Yang Y, Li Z, Wei L, Yao G, Zheng F, Chen Q (2021) Edge-nitrogen enriched carbon nanosheets for potassium-ion battery anodes with an ultrastable cycling stability. Carbon 184:277–286

    Article  CAS  Google Scholar 

  18. Pei G, Xiang J, Zhong D, Jin X, Lv X (2022) Optimizing the interlayer spacing of heteroatom-doped carbon nanofibers toward ultrahigh potassium-storage performances. ACS Appl Mater Interfaces 14:9212–9221

    Article  CAS  Google Scholar 

  19. Chae S, Xu Y, Yi R, Lim H, Velickovic D, Li X, Li Q, Wang C, Zhang J (2021) A micrometer-sized silicon/carbon composite anode synthesized by impregnation of petroleum pitch in nanoporous silicon. Adv Mater 33(40):2103095

  20. Hu X, Shang B, Zeng T, Peng Q, Li G, Zou Y, Zhang Y (2019) Core-shell (nano-SnX/nano-Li4Ti5O12)@C spheres (X = Se, Te) with high volumetric capacity and excellent cycle stability for lithium-ion batteries. Nanoscale 11(48):23268–23274

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Z, Wei T, Lu J, Xiong Q, Ji Y, Zhu Z, Zhang L (2021) Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries: A review. Int J Miner Metall Mater 28(10):1565–1583

    Article  CAS  Google Scholar 

  22. Huang S, Qin X, Lei C, Miao X, Wei T (2021) A one-pot method to fabricate reduced graphene oxide (rGO)-coated Si@SiOx@beta-Bi2O3/Bi composites for lithium-ion batteries. Electrochim Acta 390:138857

  23. Pei G, Xiang J, Zhong D, Jin X, Lv X (2020) A clean process of preparing VO as LIBs anode materials via the reduction of V2O3 powder in a H-2 atmosphere: thermodynamic assessment, isothermal kinetic analysis, and electrochemistry performance evaluation. J Alloys Compd 845:156305

  24. Li X, Xu J, Mei L, Zhang Z, Cui C, Liu H, Ma J, Dou S (2015) Electrospinning of crystalline MoO3@C nanofibers for high-rate lithium storage. J Mater Chem A 3(7):3257–3260

    Article  CAS  Google Scholar 

  25. Yang X, Ye Y, Wang Z, Zhang Z, Zhao Y, Yang F, Zhu Z, Wei T (2020) POM-based MOF-derived Co3O4/CoMoO4 nanohybrids as anodes for high-performance lithium-ion batteries. ACS Omega 5(40):26230–26236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wei T, Zhang Z, Zhang Q, Lu J, Xiong Q, Wang F, Zhou X, Zhao W, Qiu X (2021) Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries. Int J Miner Metall Mater 28(10):1636–1646

    Article  CAS  Google Scholar 

  27. Lan X, Cui J, Xiong X, He J, Yu H, Hu R (2021) Multiscale observations of inhomogeneous bilayer SEI film on a conversion-alloying SnO2 anode. Small Methods 5(12):2101111

  28. Chen F, Liu Z, Yu N, Sun H, Geng B (2021) Constructing an interspace in MnO@NC microspheres for superior lithium ion battery anodes. Chem Commun 57(83):10951–10954

    Article  CAS  Google Scholar 

  29. Luo R, Hu X, Zhang N, Li L, Wu F, Chen R (2022) Toward highly stable anode for secondary batteries: employing TiO2 shell as elastic buffering marix for FeOx nanoparticles. Small 18(11):2105713

  30. Liu D, Fang W, Li J, Zhang L, Yan M, Tang H (2022) Three-dimensional hierarchical MoO2/MoC@NC-CC free-standing anode applied in microbial fuel cells. J Mater Chem A 10(8):4110–4119

    Article  CAS  Google Scholar 

  31. Ucun T, Murutoglu M, Ulasan O, Demirkal E, Buyukaksoy A, Tur Y, Yilmaz H (2021) Cold sintering of anode-supported 8YSZ/NiO-8YSZ bilayers for solid oxide fuel cells. ACS Appl Energy Mater 4(12):13748–13758

    Article  CAS  Google Scholar 

  32. Avvaru V, Fernandez I, Feng W, Hinder S, Rodriguez M, Etacheri V (2021) Extremely pseudocapacitive interface engineered CoO@3D-NRGO hybrid anodes for high energy/ power density and ultralong life lithium-ion batteries. Carbon 171:869–881

    Article  CAS  Google Scholar 

  33. Huang S, Qin X, Miao X, Xu X, Lei C, Wei T (2021) Novel core-dual shell Si@MoO2@C nanoparticles as improved anode materials for lithium-ion batteries. ChemElectroChem 8(4):675–680

    Article  CAS  Google Scholar 

  34. Wang F, Ye Y, Wang Z, Lu J, Zhang Q, Zhou X, Xiong Q, Qiu X, Wei T (2021) MOF-derived Co3O4@rGO nanocomposites as anodes for high-performance lithium-ion batteries. Ionics 27(10):4197–4204

    Article  CAS  Google Scholar 

  35. Huang G, Zhang F, Zhang L, Du X, Wang J, Wang L (2014) Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J Mater Chem A 2(21):8048–8053

    Article  CAS  Google Scholar 

  36. Huang G, Zhang L, Zhang F, Wang L (2014) Metal-organic framework derived Fe2O3@NiCo2O4 porous nanocages as anode materials for Li-ion batteries. Nanoscale 6(10):5509–5515

    Article  CAS  PubMed  Google Scholar 

  37. Huang Y, Lin Z, Zheng M, Wang T, Yang J, Yuan F, Lu X, Liu L, Sun D (2016) Amorphous Fe2O3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries. J Power Sources 307:649–656

    Article  CAS  Google Scholar 

  38. Huang Y, Li Y, Huang R, Ji J, Yao J, Xiao S (2021) One-pot hydrothermal synthesis of N-rGO supported Fe2O3 nanoparticles as a superior anode material for lithium-ion batteries. Solid State Ionics 368:115693

  39. Kong D, Cheng C, Wang Y, Liu B, Huang Z, Yang H (2016) Seed-assisted growth of alpha-Fe2O3 nanorod arrays on reduced graphene oxide: a superior anode for high-performance Li-ion and Na-ion batteries. J Mater Chem A 4(30):11800–11811

    Article  CAS  Google Scholar 

  40. Ma J, Kong Y, Liu S, Li Y, Jiang J, Zhou Q, Huang Y, Han S (2020) Flexible phosphorus-doped graphene/metal-organic framework-derived porous Fe2O3 anode for lithium-ion battery. ACS Appl Energy Mater 3(12):11900–11906

    Article  CAS  Google Scholar 

  41. Li F, Luo G, Yu J, Huang W, Xu D, Chen W, Huang X, Yang S, Fang Y, Yu X (2019) Terminal hollowed Fe2O3@SnO2 heterojunction nanorods anode materials with enhanced performance for lithium-ion battery. J Alloys Compd 773:778–787

    Article  CAS  Google Scholar 

  42. Sun Y, Zhang J, Huang T, Liu Z, Yu A (2013) Fe2O3/CNTs composites as anode materials for lithium-ion batteries. Int J Electrochem Sci 8(2):2918–2931

    CAS  Google Scholar 

  43. Nayak D, Puravankar S, Ghosh S, Adyam V (2019) Asymmetric reaction pathway of Na+-ion during fast cycling in alpha- and gamma-Fe2O3 thin film anode for sodium-ion battery. Ionics 25(12):5857–5868

    Article  CAS  Google Scholar 

  44. Senthil RA, Priya A, Theerthagiri J, Selvi A, Nithyadharseni P, Madhavan J (2018) Facile synthesis of -Fe2O3/WO3 composite with an enhanced photocatalytic and photo-electrochemical performance. Ionics 24(11):3673–3684

    Article  CAS  Google Scholar 

  45. Krawczyk P, Rozmanowski T (2015) Preparation and electrochemical properties of EG/Fe2O3/C composite. Ionics 21(1):59–66

    Article  CAS  Google Scholar 

  46. Chen Y, Kang C, Ma L, Fu L, Li G, Hu Q, Liu Q (2021) MOF-derived Fe2O3 decorated with MnO2 nanosheet arrays as anode for high energy density hybrid supercapacitor. Chem Eng J 417:129243

  47. Zhang C, Hu W, Jiang H, Chang J, Zheng M, Wu Q, Dong Q (2017) Electrochemical performance of MIL-53(Fe)@RGO as an organic anode material for Li-ion batteries. Electrochim Acta 246:528–535

    Article  CAS  Google Scholar 

  48. Wei T, Wang Z, Zhang M, Zhang Q, Lu J, Zhou Y, Sun C, Yu Z, Wang Y, Qiao M, Qin S (2022) Activated metal-organic frameworks (a-MIL-100 (Fe)) as fillers in polymer electrolyte for high-performance all-solid-state lithium metal batteries. Mater Today Commun 31:103518

  49. Yu Z, Zhang X, Wei L, Guo X (2019) MOF-derived porous hollow α-Fe2O3 microboxes modified by silver nanoclusters for enhanced pseudocapacitive storage. Appl Surf Sci 463:616–625

    Article  CAS  Google Scholar 

  50. Zheng F, Yang Y, Chen Q (2014) High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun 5:5261

    Article  CAS  PubMed  Google Scholar 

  51. Zan J, Song H, Zuo S, Chen X, Xia D, Li D (2020) MIL-53(Fe)-derived Fe2O3 with oxygen vacancy as Fenton-like photocatalysts for the elimination of toxic organics in wastewater. J Clean Prod 246:118971

  52. Shen X, Tian Z, Fan R, Shao L, Zhang D, Cao G, Kou L, Bai Y (2018) Research progress on silicon/carbon composite anode materials for lithium-ion battery. J Energy Chem 27(4):1067–1090

    Article  Google Scholar 

  53. Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H, Zhang K, Dong S, Yao J, Cui G (2011) Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem 21(14):5430–5434

    Article  CAS  Google Scholar 

  54. Xie D, Xia X, Zhong Y, Wang Y, Wang D, Wang X, Tu J (2017) Exploring advanced sandwiched arrays by vertical graphene and N-doped carbon for enhanced sodium storage. Adv Energy Mater 7(3):1601804

  55. Zhang N, Han X, Liu Y, Hu X, Zhao Q, Chen J (2015) 3D Porous gamma-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries. Adv Energy Mater 5(5):1401123

  56. Ullah S, Campeon B, Ibraheem S, Yasin G, Pathak R, Nishina Y, Nguyen T, Slimani Y, Yuan Q (2021) Enabling the fast lithium storage of large-scalable gamma-Fe2O3/Carbon nanoarchitecture anode material with an ultralong cycle life. J Ind Eng Chem 101:379–386

    Article  CAS  Google Scholar 

  57. Liu J, Yang H, Xue X (2018) A new and simple route to prepare gamma-Fe2O3 with iron oxide scale. Mater Lett 229:156–159

    Article  CAS  Google Scholar 

  58. Huang C, Feng Z, Pei F, Fu A, Qu B, Chen X, Fang X, Kang H, Cui J (2020) Understanding protection mechanisms of graphene-encapsulated silicon anodes with operando raman spectroscopy. ACS Appl Mater Interfaces 12(31):35532–35541

    Article  CAS  PubMed  Google Scholar 

  59. Huang P, Tao W, Wu H, Li X, Yin T, Zhang Q, Qi W, Gao G, Cui D (2018) N-doped coaxial CNTs@alpha-Fe2O3@C nanofibers as anode material for high performance lithium ion battery. J Energy Chem 27(5):1453–1460

    Article  Google Scholar 

  60. Liu H, Luo S, Yan S, Wang Q, Hu D, Wang Y, Feng J, Yi T (2019) High-performance alpha-Fe2O3/C composite anodes for lithium-ion batteries synthesized by hydrothermal carbonization glucose method used pickled iron oxide red as raw material. Compos Part B 164:576–582

    Article  CAS  Google Scholar 

  61. Chou S, Wang J, Wexler D, Konstantinov K, Zhong C, Liu H, Dou S (2010) High-surface-area alpha-Fe2O3/carbon nanocomposite: one-step synthesis and its highly reversible and enhanced high-rate lithium storage properties. J Mater Chem 20(11):2092–2098

    Article  CAS  Google Scholar 

  62. Wang Z, Luan D, Madhavi S, Hu Y, Lou X (2012) Assembling carbon-coated alpha-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ Sci 5(1):5252–5256

    Article  CAS  Google Scholar 

  63. Yu W, Hou P, Li F, Liu C (2012) Improved electrochemical performance of Fe2O3 nanoparticles confined in carbon nanotubes. J Mater Chem 22(27):13756–13763

    Article  CAS  Google Scholar 

  64. Liang J, Zhou Z, Zhang Q, Hu X, Peng W, Li Y, Zhang F, Fan X (2021) Chemically-confined mesoporous γ-Fe2O3 nanospheres with Ti3C2Tx MXene via alkali treatment for enhanced lithium storage. J Power Sources 495:229758

  65. Li Q, Li H, Xia Q, Hu Z, Zhu Y, Yan S, Ge C, Zhang Q, Wang X, Shang X, Fan S, Long Y, Gu L, Miao G, Yu G, Moodera J (2021) Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat Mater 20(1):76–83

    Article  PubMed  CAS  Google Scholar 

  66. Laruelle S, Grugeon S, Poizot P, Dolle M, Dupont L, Tarascon J (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149(5):A627–A634

    Article  CAS  Google Scholar 

  67. Wu C, Zhuang Q, Wu Y, Tian L, Cui Y, Zhang X (2013) Facile syntesis of Fe3O4 hollow spheres/carbon nanotubes composites for lithium ion batteries with high-rate capacity and improved long-cycle performance. J Mater Lett 113:1–4

    Article  CAS  Google Scholar 

  68. Du M, Xu C, Sun J et al (2012) One step synthesis of Fe2O3/nitrogen-doped graphene composite as anode materials for lithium ion batteries. J Electrochim Acta 80:302–307

    Article  CAS  Google Scholar 

  69. Liu N, Shen J, Liu D (2013) A Fe2O3 nanoparticle/carbon aerogel composite for use as an anode material for lithium ion batteries. J Electrochim Acta 97:271–277

    Article  CAS  Google Scholar 

  70. Wu C, Zhuang Q, Tian L, Cui Y, Zhang X (2013) Facile synthesis of Fe@Fe2O3 core-shell nanoparticles attached to carbon nanotubes and their application as high performance anode in lithium-ion batteries. J Mater Lett 107:27–30

    Article  CAS  Google Scholar 

  71. Shen F, Wang Y, Li S, Liu J, Dong L, Wei T, Cui Y, Wu X, Xu Y, Lan Y (2018) Self-assembly of polyoxometalate/reduced graphene oxide composites induced by ionic liquids as a high-rate cathode for batteries: “killing two birds with one stone.” J Mater Chem A 6(4):1743–1750

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (No. 21701083) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX20_3137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zidong Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 327 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Zhao, Y., Chen, R. et al. Metal organic framework (MOF)–derived iron oxide@nitrogen–doped carbon nanocomposites as anode materials for lithium-ion batteries. Ionics 28, 4185–4194 (2022). https://doi.org/10.1007/s11581-022-04655-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04655-8

Keywords

Navigation