Skip to main content
Log in

Precious metal nanomaterial-modified electrochemical sensors for nitrite detection

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nitrite exists in the natural environment widely and is often used in human daily life. It causes varying degrees of harm to the water ecosystem and human health when the nitrite concentration exceeds the standard. Therefore, it is necessary to develop reliable nitrite detection methods. Compared with others, the electrochemical method for detecting nitrite has a series of advantages such as easier, lower cost, and faster analysis. The present research on the detection of nitrite by electrochemical methods focuses on the modification of electrodes. Numerous studies have shown that the addition of precious metals can increase the electronic transfer rate and the electrocatalytic active sites of the electrode, significantly improving the catalytic oxidation ability of the modified electrode for nitrite. This article reviews the research progress of precious metals (Au, Pd, Ag, Pt) in the preparation of nitrite electrochemical sensors in the past 10 years, including the application of single metal nanomaterials and bimetal or alloy materials. The performance and advantages of precious metal nanomaterials in the development of nitrite electrochemical sensors are discussed in detail. The challenges and application prospects of precious metal nanomaterials applied to nitrite electrochemical sensing platforms are proposed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li X, Ping J, Ying Y (2019) Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. TrAC Trends in Anal Chem 113:1–12. https://doi.org/10.1016/j.trac.2019.01.008

    Article  CAS  Google Scholar 

  2. Li D, Wang T, Li Z et al (2019) Application of graphene-based materials for detection of nitrate and nitrite in water-a review. Sensors (Basel) 20:54. https://doi.org/10.3390/s20010054

    Article  CAS  PubMed Central  Google Scholar 

  3. Yue R, Lu Q, Zhou Y (2011) A novel nitrite biosensor based on single-layer graphene nanoplatelet-protein composite film. Biosens Bioelectron 26:4436–4441. https://doi.org/10.1016/j.bios.2011.04.059

    Article  CAS  PubMed  Google Scholar 

  4. Kozub BR, Rees NV, Compton RG (2010) Electrochemical determination of nitrite at a bare glassy carbon electrode; why chemically modify electrodes? Sens Actuators B 143:539–546. https://doi.org/10.1016/j.snb.2009.09.065

    Article  CAS  Google Scholar 

  5. Hatta M, Ruzicka J, Measures CI (2020) The performance of a new linear light path flow cell is compared with a liquid core waveguide and the linear cell is used for spectrophotometric determination of nitrite in sea water at nanomolar concentrations. Talanta 219:121240. https://doi.org/10.1016/j.talanta.2020.121240

    Article  CAS  PubMed  Google Scholar 

  6. Wu J, Wang X, Lin Y et al (2016) Peroxynitrous-acid-induced chemiluminescence detection of nitrite based on microfluidic chip. Talanta 154:73–79. https://doi.org/10.1016/j.talanta.2016.03.062

    Article  CAS  PubMed  Google Scholar 

  7. Wang S, Lin Q, Filbrun SL et al (2021) Additive-improved colorimetric nitrite assay with ultrahigh sensitivity based on etching gold nanorods. Sens Actuators B 328:129073. https://doi.org/10.1016/j.snb.2020.129073

    Article  CAS  Google Scholar 

  8. Xu Z, Shi W, Yang C et al (2020) A colorimetric fluorescent probe for rapid and specific detection of nitrite. Luminescence 35:299–304. https://doi.org/10.1002/bio.3727

    Article  CAS  PubMed  Google Scholar 

  9. Zhang H, Lai H, Li G et al (2020) 4-Aminothiophenol capped halloysite nanotubes/silver nanoparticles as surface-enhanced Raman scattering probe for in-situ derivatization and selective determination of nitrite ions in meat product. Talanta 220:121366. https://doi.org/10.1016/j.talanta.2020.121366

    Article  CAS  PubMed  Google Scholar 

  10. Yang J-H, Yang H, Liu S et al (2015) Microwave-assisted synthesis graphite-supported Pd nanoparticles for detection of nitrite. Sens Actuators B 220:652–658. https://doi.org/10.1016/j.snb.2015.05.118

    Article  CAS  Google Scholar 

  11. Mao Y, Bao Y, Han D-X et al (2018) Research progress on nitrite electrochemical sensor. Chin J Anal Chem 46:147–155. https://doi.org/10.1016/s1872-2040(17)61066-1

    Article  CAS  Google Scholar 

  12. Liu X, Yao Y, Ying Y et al (2019) Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection. TrAC Trends in Anal Chem 115:187–202. https://doi.org/10.1016/j.trac.2019.03.021

    Article  CAS  Google Scholar 

  13. Jiang C, Li X, Yao Y et al (2018) Fully written flexible potentiometric sensor using two-dimensional nanomaterial-based conductive ink. Anal Chem 90:13088–13095. https://doi.org/10.1021/acs.analchem.8b04334

    Article  CAS  PubMed  Google Scholar 

  14. Vilian ATE, Umapathi R, Hwang SK et al (2021) Pd-Cu nanospheres supported on Mo2C for the electrochemical sensing of nitrites. J Hazard Mater 408:124914. https://doi.org/10.1016/j.jhazmat.2020.124914

    Article  CAS  PubMed  Google Scholar 

  15. Song X, Gao L, Li Y et al (2017) A sensitive and selective electrochemical nitrite sensor based on a glassy carbon electrode modified with cobalt phthalocyanine-supported Pd nanoparticles. Anal Methods 9:3166–3171. https://doi.org/10.1039/c7ay01004d

    Article  CAS  Google Scholar 

  16. Shen X, Liu W, Gao X et al (2015) Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen. J Am Chem Soc 137:15882–15891. https://doi.org/10.1021/jacs.5b10346

    Article  CAS  PubMed  Google Scholar 

  17. Xiao T, Huang J, Wang D et al (2020) Au and Au-based nanomaterials: synthesis and recent progress in electrochemical sensor applications. Talanta 206:120210. https://doi.org/10.1016/j.talanta.2019.120210

    Article  CAS  PubMed  Google Scholar 

  18. Zhang H, Liu X, Zheng J (2021) A novel non-enzymatic sensor based on bismuth molybdate @polydopamine-gold nanocomposites for efficient nitrite sensing. J Electrochem Soc 168:067519. https://doi.org/10.1149/1945-7111/ac0b5e

    Article  CAS  Google Scholar 

  19. Zou C, Yang B, Bin D et al (2017) Electrochemical synthesis of gold nanoparticles decorated flower-like graphene for high sensitivity detection of nitrite. J Colloid Interface Sci 488:135–141. https://doi.org/10.1016/j.jcis.2016.10.088

    Article  CAS  PubMed  Google Scholar 

  20. Mohd Taib SH, Shameli K, Moozarm Nia P et al (2019) Electrooxidation of nitrite based on green synthesis of gold nanoparticles using Hibiscus sabdariffa leaves. J Taiwan Inst Chem Eng 95:616–626. https://doi.org/10.1016/j.jtice.2018.09.021

    Article  CAS  Google Scholar 

  21. Jian J-M, Fu L, Ji J et al (2018) Electrochemically reduced graphene oxide/gold nanoparticles composite modified screen-printed carbon electrode for effective electrocatalytic analysis of nitrite in foods. Sens Actuators B 262:125–136. https://doi.org/10.1016/j.snb.2018.01.164

    Article  CAS  Google Scholar 

  22. Afkhami A, Soltani-Felehgari F, Madrakian T et al (2014) Surface decoration of multi-walled carbon nanotubes modified carbon paste electrode with gold nanoparticles for electro-oxidation and sensitive determination of nitrite. Biosens Bioelectron 51:379–385. https://doi.org/10.1016/j.bios.2013.07.056

    Article  CAS  PubMed  Google Scholar 

  23. Zhang S, Tang Y, Chen Y et al (2019) Synthesis of gold nanoparticles coated on flower-like MoS2 microsphere and their application for electrochemical nitrite sensing. J Electroanal Chem 839:195–201. https://doi.org/10.1016/j.jelechem.2019.03.036

    Article  CAS  Google Scholar 

  24. Chen H, Yang T, Liu F et al (2019) Electrodeposition of gold nanoparticles on Cu-based metal-organic framework for the electrochemical detection of nitrite. Sens Actuators B 286:401–407. https://doi.org/10.1016/j.snb.2018.10.036

    Article  CAS  Google Scholar 

  25. Jiao S, Jin J, Wang L (2015) One-pot preparation of Au-RGO/PDDA nanocomposites and their application for nitrite sensing. Sens Actuators B 208:36–42. https://doi.org/10.1016/j.snb.2014.11.020

    Article  CAS  Google Scholar 

  26. Liu T-S, Kang T-F, Lu L-P et al (2009) Au–Fe(III) nanoparticle modified glassy carbon electrode for electrochemical nitrite sensor. J Electroanal Chem 632:197–200. https://doi.org/10.1016/j.jelechem.2009.04.023

    Article  CAS  Google Scholar 

  27. Li Z, An Z, Guo Y et al (2016) Au-Pt bimetallic nanoparticles supported on functionalized nitrogen-doped graphene for sensitive detection of nitrite. Talanta 161:713–720. https://doi.org/10.1016/j.talanta.2016.09.033

    Article  CAS  PubMed  Google Scholar 

  28. Song Y, Ma Y, Wang Y et al (2010) Electrochemical deposition of gold–platinum alloy nanoparticles on an indium tin oxide electrode and their electrocatalytic applications. Electrochim Acta 55:4909–4914. https://doi.org/10.1016/j.electacta.2010.03.089

    Article  CAS  Google Scholar 

  29. Shi YC, Feng JJ, Chen SS et al (2017) Simple synthesis of hierarchical AuPt alloy nanochains for construction of highly sensitive hydrazine and nitrite sensors. Mater Sci Eng C Mater Biol Appl 75:1317–1325. https://doi.org/10.1016/j.msec.2017.03.041

    Article  CAS  PubMed  Google Scholar 

  30. Alam MS, Shabik MF, Rahman MM et al (2019) Enhanced electrocatalytic effects of Pd particles immobilized on GC surface on the nitrite oxidation reactions. J Electroanal Chem 839:1–8. https://doi.org/10.1016/j.jelechem.2019.02.058

    Article  CAS  Google Scholar 

  31. Pham X-H, Li CA, Han KN et al (2014) Electrochemical detection of nitrite using urchin-like palladium nanostructures on carbon nanotube thin film electrodes. Sens Actuators B 193:815–822. https://doi.org/10.1016/j.snb.2013.12.034

    Article  CAS  Google Scholar 

  32. Shen Y, Rao D, Bai W et al (2017) Preparation of high-quality palladium nanocubes heavily deposited on nitrogen-doped graphene nanocomposites and their application for enhanced electrochemical sensing. Talanta 165:304–312. https://doi.org/10.1016/j.talanta.2016.12.067

    Article  CAS  PubMed  Google Scholar 

  33. Thirumalraj B, Palanisamy S, Chen SM et al (2016) Amperometric detection of nitrite in water samples by use of electrodes consisting of palladium-nanoparticle-functionalized multi-walled carbon nanotubes. J Colloid Interface Sci 478:413–420. https://doi.org/10.1016/j.jcis.2016.06.014

    Article  CAS  PubMed  Google Scholar 

  34. Lin XR, Zheng YF, Song XC (2018) Electrocatalysis and detection of nitrite on a Pd/Fe(2)O(3) nanocomposite modified glassy carbon electrode. J Nanosci Nanotechnol 18:4858–4864. https://doi.org/10.1166/jnn.2018.15267

    Article  CAS  PubMed  Google Scholar 

  35. Li S-S, Hu Y-Y, Wang A-J et al (2015) Simple synthesis of worm-like Au–Pd nanostructures supported on reduced graphene oxide for highly sensitive detection of nitrite. Sens Actuators B 208:468–474. https://doi.org/10.1016/j.snb.2014.11.056

    Article  CAS  Google Scholar 

  36. Lu L, Wang S, Kang T et al (2007) Synergetic effect of Pd–Fe nanoclusters: electrocatalysis of nitrite oxidation. Microchim Acta 162:81–85. https://doi.org/10.1007/s00604-007-0893-x

    Article  CAS  Google Scholar 

  37. Zhe T, Sun X, Wang Q et al (2019) A screen printed carbon electrode modified with a lamellar nanocomposite containing dendritic silver nanostructures, reduced graphene oxide, and beta-cyclodextrin for voltammetric sensing of nitrite. Mikrochim Acta 186:319. https://doi.org/10.1007/s00604-019-3414-9

    Article  CAS  PubMed  Google Scholar 

  38. Ramachandran K, Kalpana D, Sathishkumar Y et al (2016) A facile green synthesis of silver nanoparticles using Piper betle biomass and its catalytic activity toward sensitive and selective nitrite detection. J Ind Eng Chem 35:29–35. https://doi.org/10.1016/j.jiec.2015.10.033

    Article  CAS  Google Scholar 

  39. Shen Y, Ma C, Zhang S et al (2020) Nanosilver and protonated carbon nitride co-coated carbon cloth fibers based non-enzymatic electrochemical sensor for determination of carcinogenic nitrite. Sci Total Environ 742:140622. https://doi.org/10.1016/j.scitotenv.2020.140622

    Article  CAS  PubMed  Google Scholar 

  40. Jeena SE, Gnanaprakasam P, Dakshinamurthy A et al (2015) Tuning the direct growth of Agseeds into bimetallic Ag@Cu nanorods on surface functionalized electrochemically reduced graphene oxide: enhanced nitrite detection. RSC Adv 5:48236–48245. https://doi.org/10.1039/c5ra05730b

    Article  CAS  Google Scholar 

  41. Manjari G, Saran S, Radhakrishanan S et al (2020) Facile green synthesis of Ag-Cu decorated ZnO nanocomposite for effective removal of toxic organic compounds and an efficient detection of nitrite ions. J Environ Manage 262:110282. https://doi.org/10.1016/j.jenvman.2020.110282

    Article  CAS  PubMed  Google Scholar 

  42. Unnikrishnan B, Ru P-L, Chen S-M et al (2013) Nitrite determination at electrochemically synthesized polydiphenylamine-Pt composite modified glassy carbon electrode. Sens Actuators B 177:887–892. https://doi.org/10.1016/j.snb.2012.11.102

    Article  CAS  Google Scholar 

  43. Lu L (2019) Highly sensitive detection of nitrite at a novel electrochemical sensor based on mutually stabilized Pt nanoclusters doped CoO nanohybrid. Sens Actuators B 281:182–190. https://doi.org/10.1016/j.snb.2018.10.074

    Article  CAS  Google Scholar 

  44. Li Y, Zhang X, Zheng J (2020) One-pot aqueous method for facile synthesis of platinum-copper bimetallic catalyst based on graphene oxide and its highly enhanced sensing of nitrite. J Mater Sci: Mater Electron 31:13301–13309. https://doi.org/10.1007/s10854-020-03883-w

    Article  CAS  Google Scholar 

  45. Zhao G-Y, Xu C-L, Li H-L (2008) Pt–Ru nanowire arrayed electrodes for nitrite detection. Mater Lett 62:1663–1665. https://doi.org/10.1016/j.matlet.2007.09.055

    Article  CAS  Google Scholar 

  46. Abdel Hameed RM, Medany SS (2018) Sensitive nitrite detection at core-shell structured Cu@Pt nanoparticles supported on graphene. Appl Surf Sci 458:252–263. https://doi.org/10.1016/j.apsusc.2018.07.079

    Article  CAS  Google Scholar 

  47. Abdel Hameed RM, Medany SS (2019) Evaluation of core-shell structured cobalt@platinum nanoparticles-decorated graphene for nitrite sensing. Synth Met 247:67–80. https://doi.org/10.1016/j.synthmet.2018.11.011

    Article  CAS  Google Scholar 

  48. Jiang C, Lan L, Yao Y et al (2018) Recent progress in application of nanomaterial-enabled biosensors for ochratoxin A detection. TrAC Trends in Anal Chem 102:236–249. https://doi.org/10.1016/j.trac.2018.02.007

    Article  CAS  Google Scholar 

  49. Gobelli D, Mariano Correa N, Fátima Barroso M et al (2015) “Green electrodes” modified with Au nanoparticles synthesized in glycerol, as electrochemical nitrite sensor. Electroanalysis 27:1883–1891. https://doi.org/10.1002/elan.201500022

    Article  CAS  Google Scholar 

  50. Wan Y, Zheng YF, Yin HY et al (2016) Au nanoparticle modified carbon paper electrode for an electrocatalytic oxidation nitrite sensor. New J Chem 40:3635–3641. https://doi.org/10.1039/c5nj02941d

    Article  CAS  Google Scholar 

  51. Rao D, Zhang J, Zheng J (2016) A novel electrochemical sensor based on gold nanorods and Nafion-modified GCE for the electrocatalytic oxidation of nitrite. J Iran Chem Soc 13:2257–2266. https://doi.org/10.1007/s13738-016-0944-5

    Article  CAS  Google Scholar 

  52. Kumar A, Gonçalves JM, Sukeri A et al (2018) Correlating surface growth of nanoporous gold with electrodeposition parameters to optimize amperometric sensing of nitrite. Sens Actuators B 263:237–247. https://doi.org/10.1016/j.snb.2018.02.125

    Article  CAS  Google Scholar 

  53. Ge X, Wang L, Liu Z et al (2011) Nanoporous gold leaf for amperometric determination of nitrite. Electroanalysis 23:381–386. https://doi.org/10.1002/elan.201000320

    Article  CAS  Google Scholar 

  54. Manikandan VS, Liu Z, Chen A (2018) Simultaneous detection of hydrazine, sulfite, and nitrite based on a nanoporous gold microelectrode. J Electroanal Chem 819:524–532. https://doi.org/10.1016/j.jelechem.2018.02.004

    Article  CAS  Google Scholar 

  55. Zhang F, Yuan Y, Zheng Y et al (2017) A glassy carbon electrode modified with gold nanoparticle-encapsulated graphene oxide hollow microspheres for voltammetric sensing of nitrite. Microchim Acta 184:1565–1572. https://doi.org/10.1007/s00604-017-2264-6

    Article  CAS  Google Scholar 

  56. Li S-J, Zhao G-Y, Zhang R-X et al (2013) A sensitive and selective nitrite sensor based on a glassy carbon electrode modified with gold nanoparticles and sulfonated graphene. MicrochimActa 180:821–827. https://doi.org/10.1007/s00604-013-0999-2

    Article  CAS  Google Scholar 

  57. He B, Yan D (2019) Au/ERGO nanoparticles supported on Cu-based metal-organic framework as a novel sensor for sensitive determination of nitrite. Food Control 103:70–77. https://doi.org/10.1016/j.foodcont.2019.04.001

    Article  CAS  Google Scholar 

  58. Ma X, Miao T, Zhu W et al (2014) Electrochemical detection of nitrite based on glassy carbon electrode modified with gold–polyaniline–graphene nanocomposites. RSC Adv 4:57842–57849. https://doi.org/10.1039/c4ra08543d

    Article  CAS  Google Scholar 

  59. Mo R, Wang X, Yuan Q et al (2018) Electrochemical determination of nitrite by Au nanoparticle/graphene-chitosan modified electrode. Sensors (Basel) 18:1986. https://doi.org/10.3390/s18071986

    Article  CAS  Google Scholar 

  60. Nasraoui S, Al-Hamry A, Teixeira PR et al (2021) Electrochemical sensor for nitrite detection in water samples using flexible laser-induced graphene electrodes functionalized by CNT decorated by Au nanoparticles. J Electroanal Chem 880:114893. https://doi.org/10.1016/j.jelechem.2020.114893

    Article  CAS  Google Scholar 

  61. Pan F, Chen D, Zhuang X et al (2018) Fabrication of gold nanoparticles/l-cysteine functionalized graphene oxide nanocomposites and application for nitrite detection. J Alloys Compd 744:51–56. https://doi.org/10.1016/j.jallcom.2018.02.053

    Article  CAS  Google Scholar 

  62. Zhou Y, Ma M, He H et al (2019) Highly sensitive nitrite sensor based on AuNPs/RGO nanocomposites modified graphene electrochemical transistors. Biosens Bioelectron 146:111751. https://doi.org/10.1016/j.bios.2019.111751

    Article  CAS  PubMed  Google Scholar 

  63. Jiang J, Fan W, Du X (2014) Nitrite electrochemical biosensing based on coupled graphene and gold nanoparticles. Biosens Bioelectron 51:343–348. https://doi.org/10.1016/j.bios.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  64. Yuan B, Xu C, Liu L et al (2014) Polyethylenimine-bridged graphene oxide–gold film on glassy carbon electrode and its electrocatalytic activity toward nitrite and hydrogen peroxide. Sens Actuators B 198:55–61. https://doi.org/10.1016/j.snb.2014.03.014

    Article  CAS  Google Scholar 

  65. Bhat SA, Pandit SA, Rather MA et al (2017) Self-assembled AuNPs on sulphur-doped graphene: a dual and highly efficient electrochemical sensor for nitrite (NO2−) and nitric oxide (NO). New J Chem 41:8347–8358. https://doi.org/10.1039/c7nj01565h

    Article  CAS  Google Scholar 

  66. Rao D, Sheng Q, Zheng J (2016) Self-assembly preparation of gold nanoparticle decorated 1-pyrenemethylamine functionalized graphene oxide–carbon nanotube composites for highly sensitive detection of nitrite. Anal Methods 8:4926–4933. https://doi.org/10.1039/c6ay01316c

    Article  CAS  Google Scholar 

  67. Han Y, Zhang R, Dong C et al (2019) Sensitive electrochemical sensor for nitrite ions based on rose-like AuNPs/MoS2/graphene composite. Biosens Bioelectron 142:111529. https://doi.org/10.1016/j.bios.2019.111529

    Article  CAS  PubMed  Google Scholar 

  68. Li C, Chen D, Wang Y et al (2019) Simultaneous electrochemical detection of nitrite and hydrogen peroxide based on 3D Au-rGO/FTO obtained through a one-step synthesis. Sensors (Basel) 19:1304. https://doi.org/10.3390/s19061304

    Article  CAS  Google Scholar 

  69. Le HT, Tran DT, Kim NH et al (2021) Worm-like gold nanowires assembled carbon nanofibers-CVD graphene hybrid as sensitive and selective sensor for nitrite detection. J Colloid Interface Sci 583:425–434. https://doi.org/10.1016/j.jcis.2020.09.068

    Article  CAS  PubMed  Google Scholar 

  70. Ali A, Zhang Y, Jamal R et al (2017) Solid-state heating synthesis of poly (3,4-ethylenedioxythiophene)/gold/graphene composite and its application for amperometric determination of nitrite and iodate. Nanoscale Res Lett 12:568. https://doi.org/10.1186/s11671-017-2338-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li S-J, Lv M-M, Meng J-J et al (2018) A 3D composite of gold nanoparticle-decorated MnO2-graphene-carbon nanotubes as a novel sensing platform for the determination of nitrite. Ionics 24:3177–3186. https://doi.org/10.1007/s11581-017-2426-x

    Article  CAS  Google Scholar 

  72. Zhang Y, Yuan R, Chai Y et al (2012) Amperometric sensor for nitrite using a glassy carbon electrode modified with thionine functionalized MWCNTs/Au nanorods/SDS nanohybrids. Surf Interface Anal 44:1233–1237. https://doi.org/10.1002/sia.4924

    Article  CAS  Google Scholar 

  73. Yin HY, Wan Y, Wang L (2019) Au/NiO/multi-walled carbon nanotubes nanocomposite electrode for nitrite electrochemical determination. J Nanosci Nanotechnol 19:5279–5286. https://doi.org/10.1166/jnn.2019.16820

    Article  CAS  PubMed  Google Scholar 

  74. Lin A-J, Wen Y, Zhang L-J et al (2011) Layer-by-layer construction of multi-walled carbon nanotubes, zinc oxide, and gold nanoparticles integrated composite electrode for nitrite detection. Electrochim Acta 56:1030–1036. https://doi.org/10.1016/j.electacta.2010.10.058

    Article  CAS  Google Scholar 

  75. Sun L, Li H, Li M et al (2016) Simultaneous determination of small biomolecules and nitrite using an Au/TiO2/carbon nanotube composite-modified electrode. J Electrochem Soc 163:B567–B572. https://doi.org/10.1149/2.0361613jes

    Article  CAS  Google Scholar 

  76. Lei H, Zhu H, Sun S et al (2021) Synergistic integration of Au nanoparticles, Co-MOF and MWCNT as biosensors for sensitive detection of low-concentration nitrite. Electrochim Acta 365:137375. https://doi.org/10.1016/j.electacta.2020.137375

    Article  CAS  Google Scholar 

  77. Rao H, Liu Y, Zhong J et al (2017) Gold nanoparticle/chitosan@N, S Co-doped multiwalled carbon nanotubes sensor: fabrication, characterization, and electrochemical detection of catechol and nitrite. ACS Sustainable Chem Eng 5:10926–10939. https://doi.org/10.1021/acssuschemeng.7b02840

    Article  CAS  Google Scholar 

  78. Zhuang Z, Lin H, Zhang X et al (2016) A glassy carbon electrode modified with carbon dots and gold nanoparticles for enhanced electrocatalytic oxidation and detection of nitrite. Microchim Acta 183:2807–2814. https://doi.org/10.1007/s00604-016-1931-3

    Article  Google Scholar 

  79. Yang XJ, Wang YH, Bai J et al (2015) Large mesoporous carbons decorated with silver and gold nanoparticles by a self-assembly method: enhanced electrocatalytic activity for H2O2 electroreduction and sodium nitrite electrooxidation. RSC Adv 5:2956–2962. https://doi.org/10.1039/c4ra14374d

    Article  CAS  Google Scholar 

  80. Liu J (2019) Construction of Nafion/Hb/Au/ZIF-8/CILE and its application as electrochemical sensor for determination of bromate and nitrite. Int J Electrochem Sci 14:1310–1317. https://doi.org/10.20964/2019.02.16

    Article  CAS  Google Scholar 

  81. Yadav DK, Ganesan V, Sonkar PK et al (2016) Electrochemical investigation of gold nanoparticles incorporated zinc based metal-organic framework for selective recognition of nitrite and nitrobenzene. Electrochim Acta 200:276–282. https://doi.org/10.1016/j.electacta.2016.03.092

    Article  CAS  Google Scholar 

  82. Lei P, Zhou Y, Zhu R et al (2020) Gold nanoparticles decorated bimetallic CuNi-based hollow nanoarchitecture for the enhancement of electrochemical sensing performance of nitrite. Mikrochim Acta 187:572. https://doi.org/10.1007/s00604-020-04545-8

    Article  CAS  PubMed  Google Scholar 

  83. Diouf A, El Bari N, Bouchikhi B (2020) A novel electrochemical sensor based on ion imprinted polymer and gold nanomaterials for nitrite ion analysis in exhaled breath condensate. Talanta 209:120577. https://doi.org/10.1016/j.talanta.2019.120577

    Article  CAS  PubMed  Google Scholar 

  84. Uzer A, Saglam S, Can Z et al (2016) Electrochemical determination of food preservative nitrite with gold nanoparticles/p-aminothiophenol-modified gold electrode. Int J Mol Sci 17:1253. https://doi.org/10.3390/ijms17081253

    Article  CAS  PubMed Central  Google Scholar 

  85. Huang X, Li Y, Chen Y et al (2008) Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode. Sens Actuators B 134:780–786. https://doi.org/10.1016/j.snb.2008.06.028

    Article  CAS  Google Scholar 

  86. Losada J, García Armada MP, García E et al (2017) Electrochemical preparation of gold nanoparticles on ferrocenyl-dendrimer film modified electrodes and their application for the electrocatalytic oxidation and amperometric detection of nitrite. J Electroanal Chem 788:14–22. https://doi.org/10.1016/j.jelechem.2017.01.066

    Article  CAS  Google Scholar 

  87. Ge Y, Jamal R, Zhang R et al (2020) Electrochemical synthesis of multilayered PEDOT/PEDOT-SH/Au nanocomposites for electrochemical sensing of nitrite. Mikrochim Acta 187:248. https://doi.org/10.1007/s00604-020-4211-1

    Article  CAS  PubMed  Google Scholar 

  88. Lin P, Chai F, Zhang R et al (2016) Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) doped with gold nanoparticles, and its application to nitrite sensing. Microchim Acta 183:1235–1241. https://doi.org/10.1007/s00604-016-1751-5

    Article  CAS  Google Scholar 

  89. Cui L, Meng X, Xu M et al (2011) Electro-oxidation nitrite based on copper calcined layered double hydroxide and gold nanoparticles modified glassy carbon electrode. Electrochim Acta 56:9769–9774. https://doi.org/10.1016/j.electacta.2011.08.026

    Article  CAS  Google Scholar 

  90. Fan X, Lin P, Liang S et al (2016) Gold nanoclusters doped poly(3,4-ethylenedioxythiophene) for highly sensitive electrochemical sensing of nitrite. Ionics 23:997–1003. https://doi.org/10.1007/s11581-016-1865-0

    Article  CAS  Google Scholar 

  91. Duan C, Bai W, Zheng J (2018) Non-enzymatic sensors based on a glassy carbon electrode modified with Au nanoparticles/polyaniline/SnO2 fibrous nanocomposites for nitrite sensing. New J Chem 42:11516–11524. https://doi.org/10.1039/c8nj01461b

    Article  CAS  Google Scholar 

  92. Zhang O, Wen Y, Xu J et al (2013) One-step synthesis of poly(3,4-ethylenedioxythiophene)–Au composites and their application for the detection of nitrite. Synth Metals 164:47–51. https://doi.org/10.1016/j.synthmet.2012.11.013

    Article  CAS  Google Scholar 

  93. Zuo J, Zhang Z, Jiao J et al (2016) Sensitive and selective nitrite sensor based on phosphovanadomolybdates H6[PMo9V3O40], poly(3,4-ethylenedioxythiophene) and Au nanoparticles. Sens Actuators B 236:418–424. https://doi.org/10.1016/j.snb.2016.05.159

    Article  CAS  Google Scholar 

  94. Koyun O, Sahin Y (2018) Voltammetric determination of nitrite with gold nanoparticles/poly(methylene blue)-modified pencil graphite electrode: application in food and water samples. Ionics 24:3187–3197. https://doi.org/10.1007/s11581-017-2429-7

    Article  CAS  Google Scholar 

  95. Muthukumar P, Abraham John S (2014) Gold nanoparticles decorated on cobalt porphyrin-modified glassy carbon electrode for the sensitive determination of nitrite ion. J Colloid Interface Sci 421:78–84. https://doi.org/10.1016/j.jcis.2014.01.030

    Article  CAS  PubMed  Google Scholar 

  96. Zou HL, Li BL, Luo HQ et al (2017) 0D–2D heterostructures of Au nanoparticles and layered MoS2 for simultaneous detections of dopamine, ascorbic acid, uric acid, and nitrite. Sens Actuators B 253:352–360. https://doi.org/10.1016/j.snb.2017.06.158

    Article  CAS  Google Scholar 

  97. Li X, Zou N, Wang Z et al (2019) An electrochemical sensor for determination of nitrite based on Au nanoparticles decorated MoS2 nanosheets. Chem Pap 74:441–449. https://doi.org/10.1007/s11696-019-00885-9

    Article  CAS  Google Scholar 

  98. Zhang Y, Wen F, Tan J et al (2017) Highly efficient electrocatalytic oxidation of nitrite by electrodeposition of Au nanoparticles on molybdenum sulfide and multi-walled carbon nanotubes. J Electroanal Chem 786:43–49. https://doi.org/10.1016/j.jelechem.2017.01.007

    Article  CAS  Google Scholar 

  99. Yu C, Guo J, Gu H (2010) Electrocatalytical oxidation of nitrite and its determination based on Au@Fe3O4 nanoparticles. Electroanalysis 22:1005–1011. https://doi.org/10.1002/elan.200900465

    Article  CAS  Google Scholar 

  100. Kang S, Zhang H, Wang G et al (2019) Highly sensitive detection of nitrite by using gold nanoparticle-decorated α-Fe2O3 nanorod arrays as self-supporting photo-electrodes. Inorg Chem Front 6:1432–1441. https://doi.org/10.1039/c9qi00176j

    Article  CAS  Google Scholar 

  101. Liu Y, Gu H-Y (2008) Amperometric detection of nitrite using a nanometer-sized gold colloid modified pretreated glassy carbon electrode. Microchim Acta 162:101–106. https://doi.org/10.1007/s00604-007-0946-9

    Article  CAS  Google Scholar 

  102. Ding Q, Cao L, Liu M et al (2021) Au nanoparticle-loaded eggshell for electrochemical detection of nitrite. RSC Adv 11:4112–4117. https://doi.org/10.1039/d0ra09892b

    Article  CAS  PubMed Central  Google Scholar 

  103. Zou H, Zhang F, Wang H et al (2019) Au nanoparticles supported on functionalized two-dimensional titanium carbide for the sensitive detection of nitrite. New J Chem 43:2464–2470. https://doi.org/10.1039/c8nj05999c

    Article  CAS  Google Scholar 

  104. Maduraiveeran G, Ramaraj R (2017) Gold nanoparticle-based sensing platform of hydrazine, sulfite, and nitrite for food safety and environmental monitoring. J Anal Sci Technol 8:14. https://doi.org/10.1186/s40543-017-0113-1

    Article  CAS  Google Scholar 

  105. Luo J, Jiang Y, Guo X et al (2020) SnO2 nanofibers decorated with Au nanoparticles for Ru(bpy)32+ sensitized photoelectrochemical determination of NO2− in urine. Sens Actuators B 309:127714. https://doi.org/10.1016/j.snb.2020.127714

    Article  CAS  Google Scholar 

  106. Duan C, Dong Y, Zheng J (2019) Synthesis Au nanoparticles decorated cloud-like tin dioxide nanocomposites for enzymatic-free nitrite sensing. Inorg Chem Commun 105:166–173. https://doi.org/10.1016/j.inoche.2019.04.040

    Article  CAS  Google Scholar 

  107. Shankar S, Gowthaman NSK, John SA (2018) Synthesis of albumin capped gold nanoparticles and their direct attachment on glassy carbon electrode for the determination of nitrite ion. J Electroanal Chem 828:33–40. https://doi.org/10.1016/j.jelechem.2018.09.030

    Article  CAS  Google Scholar 

  108. Zhang Y-M, Huang H-P, Xu L (2020) A novel electrochemical sensor based on Au-Dy2(WO4)3 nanocomposites for simultaneous determination of uric acid and nitrite. Chin J Anal Chem 48:e20032–e20037. https://doi.org/10.1016/s1872-2040(20)60005-6

    Article  Google Scholar 

  109. Wang P, Mai Z, Dai Z et al (2009) Construction of Au nanoparticles on choline chloride modified glassy carbon electrode for sensitive detection of nitrite. Biosens Bioelectron 24:3242–3247. https://doi.org/10.1016/j.bios.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  110. Huang S-S, Liu L, Mei L-P et al (2015) Electrochemical sensor for nitrite using a glassy carbon electrode modified with gold-copper nanochain networks. Microchim Acta 183:791–797. https://doi.org/10.1007/s00604-015-1717-z

    Article  CAS  Google Scholar 

  111. Lavanya AL, Kumari KGB, Prasad KRS et al (2021) Development of pen-type portable electrochemical sensor based on Au-W bimetallic nanoparticles decorated graphene-chitosan nanocomposite film for the detection of nitrite in water, milk and fruit juices. Electroanalysis 33:1096–1106. https://doi.org/10.1002/elan.202060524

    Article  CAS  Google Scholar 

  112. Yang G, Yang Y, Wang Y et al (2012) Controlled electrochemical behavior of indium tin oxide electrode modified with Pd nanoparticles via electrospinning followed by calcination toward nitrite ions. Electrochim Acta 78:200–204. https://doi.org/10.1016/j.electacta.2012.05.149

    Article  CAS  Google Scholar 

  113. Fu L, Yu S, Thompson L et al (2015) Development of a novel nitrite electrochemical sensor by stepwise in situ formation of palladium and reduced graphene oxide nanocomposites. RSC Adv 5:40111–40116. https://doi.org/10.1039/c5ra02661j

    Article  CAS  Google Scholar 

  114. Zhang Y, Zhao Y, Yuan S et al (2013) Electrocatalysis and detection of nitrite on a reduced graphene/Pd nanocomposite modified glassy carbon electrode. Sens Actuators B 185:602–607. https://doi.org/10.1016/j.snb.2013.05.059

    Article  CAS  Google Scholar 

  115. Chen W, Niu X, Li X et al (2017) Investigation on direct electrochemical and electrocatalytic behavior of hemoglobin on palladium-graphene modified electrode. Mater Sci Eng C Mater Biol Appl 80:135–140. https://doi.org/10.1016/j.msec.2017.05.129

    Article  CAS  PubMed  Google Scholar 

  116. Zhao Z, Xia Z, Liu C et al (2017) Green synthesis of Pd/Fe3O4 composite based on polyDOPA functionalized reduced graphene oxide for electrochemical detection of nitrite in cured food. Electrochim Acta 256:146–154. https://doi.org/10.1016/j.electacta.2017.09.185

    Article  CAS  Google Scholar 

  117. Shi S (2019) Electrochemically co-deposition of palladium nanoparticles and poly(1, 5-diaminonaphthalene) onto multiwalled carbon nanotubes (MWCNTs) modified electrode and its application for amperometric determination of nitrite. Int J Electrochem Sci 14:7983–7994. https://doi.org/10.20964/2019.08.22

    Article  CAS  Google Scholar 

  118. Promsuwan K, Kanatharana P, Thavarungkul P et al (2020) Nitrite amperometric sensor for gunshot residue screening. Electrochim Acta 331:135309. https://doi.org/10.1016/j.electacta.2019.135309

    Article  CAS  Google Scholar 

  119. Liu D, Guo Q, Zhang X et al (2015) PdCo alloy nanoparticle-embedded carbon nanofiber for ultrasensitive nonenzymatic detection of hydrogen peroxide and nitrite. J Colloid Interface Sci 450:168–173. https://doi.org/10.1016/j.jcis.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  120. Ezhil Vilian AT, Dinesh B, Muruganantham R et al (2017) A screen printed carbon electrode modified with an amino-functionalized metal organic framework of type MIL-101(Cr) and with palladium nanoparticles for voltammetric sensing of nitrite. Microchim Acta 184:4793–4801. https://doi.org/10.1007/s00604-017-2513-8

    Article  CAS  Google Scholar 

  121. Pournaghi-Azar MH, Dastangoo H (2004) Electrocatalytic oxidation of nitrite at an aluminum electrode modified by a chemically deposited palladium pentacyanonitrosylferrate film. J Electroanal Chem 567:211–218. https://doi.org/10.1016/j.jelechem.2003.12.027

    Article  CAS  Google Scholar 

  122. Mahmoodi A, Ensafi AA, Rezaei B (2020) Fabrication of electrochemical sensor based on CeO2−SnO2 nanocomposite loaded on Pd support for determination of nitrite at trace levels. Electroanalysis 32:1025–1033. https://doi.org/10.1002/elan.201900598

    Article  CAS  Google Scholar 

  123. Wang J, Zhou H, Fan D et al (2014) A glassy carbon electrode modified with nanoporous PdFe alloy for highly sensitive continuous determination of nitrite. Microchim Acta 182:1055–1061. https://doi.org/10.1007/s00604-014-1432-1

    Article  CAS  Google Scholar 

  124. Chen T, Xu J, Yang P et al (2019) Facile controlled synthesis of AuPd and AuPt bimetallic nanocrystals for enhanced electrocatalytic sensing. Sens Actuators B 298:126724. https://doi.org/10.1016/j.snb.2019.126724

    Article  CAS  Google Scholar 

  125. Zhu X, Kang G, Lin X (2007) PdCu alloy nanoclusters: generation and activity tuning for electrocatalytic oxidation of nitrite. Microchim Acta 159:141–148. https://doi.org/10.1007/s00604-007-0737-8

    Article  CAS  Google Scholar 

  126. Li S, Wang T, Yue R et al (2019) PdFe ultrathin nanosheets for highly sensitive detection of nitrite. Electroanalysis 32:931–938. https://doi.org/10.1002/elan.201900589

    Article  CAS  Google Scholar 

  127. Wang H, Bo X, Bai J et al (2011) Electrochemical applications of platinum–palladium alloy nanoparticles/large mesoporous carbon. J Electroanal Chem 662:281–287. https://doi.org/10.1016/j.jelechem.2011.06.020

    Article  CAS  Google Scholar 

  128. Xie Q, He W, Yu S et al (2014) Sensitive sensors for amperometric detection of nitrite based on carbon-supported PdNi and PdCo bimetallic nanoparticles. Anal Methods 6:7716–7721. https://doi.org/10.1039/c4ay01461h

    Article  CAS  Google Scholar 

  129. Yang J, Yang L, Ye H et al (2016) Highly dispersed AuPd alloy nanoparticles immobilized on UiO-66-NH 2 metal-organic framework for the detection of nitrite. Electrochim Acta 219:647–654. https://doi.org/10.1016/j.electacta.2016.10.071

    Article  CAS  Google Scholar 

  130. Xi R, Zhang SH, Zhang L et al (2019) Electrodeposition of Pd-Pt nanocomposites on porous GaN for electrochemical nitrite sensing. Sensors (Basel) 19:606. https://doi.org/10.3390/s19030606

    Article  CAS  Google Scholar 

  131. Bibi S, Zaman MI, Niaz A et al (2019) Voltammetric determination of nitrite by using a multiwalled carbon nanotube paste electrode modified with chitosan-functionalized silver nanoparticles. Mikrochim Acta 186:595. https://doi.org/10.1007/s00604-019-3699-8

    Article  CAS  PubMed  Google Scholar 

  132. Wan Y, Zheng YF, Wan HT et al (2017) A novel electrochemical sensor based on Ag nanoparticles decorated multi-walled carbon nanotubes for applied determination of nitrite. Food Control 73:1507–1513. https://doi.org/10.1016/j.foodcont.2016.11.014

    Article  CAS  Google Scholar 

  133. Ghanei-Motlagh M, Taher MA (2018) A novel electrochemical sensor based on silver/halloysite nanotube/molybdenum disulfide nanocomposite for efficient nitrite sensing. Biosens Bioelectron 109:279–285. https://doi.org/10.1016/j.bios.2018.02.057

    Article  CAS  PubMed  Google Scholar 

  134. Rastogi PK, Ganesan V, Krishnamoorthi S (2014) A promising electrochemical sensing platform based on a silver nanoparticles decorated copolymer for sensitive nitrite determination. J Mater Chem A 2:933–943. https://doi.org/10.1039/c3ta13794e

    Article  CAS  Google Scholar 

  135. Hajisafari M, Nasirizadeh N (2017) An electrochemical nanosensor for simultaneous determination of hydroxylamine and nitrite using oxadiazole self-assembled on silver nanoparticle-modified glassy carbon electrode. Ionics 23:1541–1551. https://doi.org/10.1007/s11581-016-1962-0

    Article  CAS  Google Scholar 

  136. Li B-Q, Nie F, Sheng Q-L et al (2015) An electrochemical sensor for sensitive determination of nitrites based on Ag–Fe3O4–graphene oxide magnetic nanocomposites. Chem Pap 69:911–920. https://doi.org/10.1515/chempap-2015-0099

    Article  CAS  Google Scholar 

  137. Guadagnini L, Tonelli D (2013) Carbon electrodes unmodified and decorated with silver nanoparticles for the determination of nitrite, nitrate and iodate. Sens Actuators B 188:806–814. https://doi.org/10.1016/j.snb.2013.07.077

    Article  CAS  Google Scholar 

  138. Lo N-C, Sun IW, Chen P-Y (2018) CuAg nanoparticles formed in situ on electrochemically pre-anodized screen-printed carbon electrodes for the detection of nitrate and nitrite anions. J Chin Chem Soc 65:982–988. https://doi.org/10.1002/jccs.201800047

    Article  CAS  Google Scholar 

  139. Rameshkumar P, Ramaraj R (2014) Electroanalysis of nitrobenzene derivatives and nitrite ions using silver nanoparticles deposited silica spheres modified electrode. J Electroanal Chem 731:72–77. https://doi.org/10.1016/j.jelechem.2014.08.010

    Article  CAS  Google Scholar 

  140. Shivakumar M, Nagashree KL, Manjappa S et al (2017) Electrochemical detection of nitrite using glassy carbon electrode modified with silver nanospheres (AgNS) obtained by green synthesis using pre-hydrolysed liquor. Electroanalysis 29:1434–1442. https://doi.org/10.1002/elan.201600775

    Article  CAS  Google Scholar 

  141. Pal M, Ganesan V (2010) Electrochemical determination of nitrite using silver nanoparticles modified electrode. Analyst 135:2711–2716. https://doi.org/10.1039/c0an00289e

    Article  CAS  PubMed  Google Scholar 

  142. Ning D, Zhang H, Zheng J (2014) Electrochemical sensor for sensitive determination of nitrite based on the PAMAM dendrimer-stabilized silver nanoparticles. J Electroanal Chem 717–718:29–33. https://doi.org/10.1016/j.jelechem.2013.12.011

    Article  CAS  Google Scholar 

  143. Dong S, Zhang D, Suo G et al (2016) Exploiting multi-function metal-organic framework nanocomposite Ag@Zn-TSA as highly efficient immobilization matrixes for sensitive electrochemical biosensing. Anal Chim Acta 934:203–211. https://doi.org/10.1016/j.aca.2016.05.040

    Article  CAS  PubMed  Google Scholar 

  144. Ahmad R, Mahmoudi T, Ahn MS et al (2018) Fabrication of sensitive non-enzymatic nitrite sensor using silver-reduced graphene oxide nanocomposite. J Colloid Interface Sci 516:67–75. https://doi.org/10.1016/j.jcis.2018.01.052

    Article  CAS  PubMed  Google Scholar 

  145. Ikhsan NI, Rameshkumar P, Pandikumar A et al (2015) Facile synthesis of graphene oxide-silver nanocomposite and its modified electrode for enhanced electrochemical detection of nitrite ions. Talanta 144:908–914. https://doi.org/10.1016/j.talanta.2015.07.050

    Article  CAS  PubMed  Google Scholar 

  146. Zhang M, Liu J, Nie F et al (2015) Facile synthesis of TiO2-functionalized graphene nanosheet-supported Ag catalyst and its electrochemical oxidation of nitrite. J Iran Chem Soc 12:1535–1542. https://doi.org/10.1007/s13738-015-0625-9

    Article  CAS  Google Scholar 

  147. Promsuwan K, Thavarungkul P, Kanatharana P et al (2017) Flow injection amperometric nitrite sensor based on silver microcubics-poly (acrylic acid)/poly (vinyl alcohol) modified screen printed carbon electrode. Electrochim Acta 232:357–369. https://doi.org/10.1016/j.electacta.2017.02.138

    Article  CAS  Google Scholar 

  148. ElKaoutit M, Naggar AH, Naranjo-Rodriguez I et al (2012) Graphite grains studded with silver nanoparticles: description and application in promoting direct biocatalysis between heme protein and the resulting carbon paste electrode. Colloids Surf B 92:42–49. https://doi.org/10.1016/j.colsurfb.2011.11.023

    Article  CAS  Google Scholar 

  149. Zhao X, Li N, Jing M et al (2019) Monodispersed and spherical silver nanoparticles/graphene nanocomposites from gamma-ray assisted in-situ synthesis for nitrite electrochemical sensing. Electrochim Acta 295:434–443. https://doi.org/10.1016/j.electacta.2018.10.039

    Article  CAS  Google Scholar 

  150. Shaikh A, Parida S, Böhm S (2016) One step eco-friendly synthesis of Ag–reduced graphene oxide nanocomposite by phytoreduction for sensitive nitrite determination. RSC Adv 6:100383–100391. https://doi.org/10.1039/c6ra23655c

    Article  CAS  Google Scholar 

  151. Gupta S, Prakash R (2014) Photochemical assisted formation of silver nano dendrites and their application in amperometric sensing of nitrite. RSC Adv 4:7521–7527. https://doi.org/10.1039/c3ra45360j

    Article  CAS  Google Scholar 

  152. Wang Y-C, Chen Y-C, Chuang W-S et al (2020) Pore-confined silver nanoparticles in a porphyrinic metal–organic framework for electrochemical nitrite detection. ACS Appl Nano Mater 3:9440–9448. https://doi.org/10.1021/acsanm.0c02052

    Article  CAS  Google Scholar 

  153. Dagci K, Alanyalioglu M (2016) Preparation of free-standing and flexible graphene/Ag nanoparticles/poly(pyronin Y) hybrid paper electrode for amperometric determination of nitrite. ACS Appl Mater Interfaces 8:2713–2722. https://doi.org/10.1021/acsami.5b10973

    Article  CAS  PubMed  Google Scholar 

  154. Maduraiveeran G, Manivasakan P, Ramaraj R (2011) Silver nanoparticles embedded three dimensional silicate sol-gel matrix modified electrode for nitrite sensor application. Int J Nanotechnol 8:925–934. https://doi.org/10.1504/ijnt.2011.044437

    Article  CAS  Google Scholar 

  155. Shaikh T, Ibupoto ZH, Talpur FN et al (2017) Selective and sensitive nitrite sensor based on glassy carbon electrode modified by silver nanochains. Electroanalysis 29:415–422. https://doi.org/10.1002/elan.201600221

    Article  CAS  Google Scholar 

  156. Zhang S, Liu X, Huang N et al (2016) Sensitive detection of hydrogen peroxide and nitrite based on silver/carbon nanocomposite synthesized by carbon dots as reductant via one step method. Electrochim Acta 211:36–43. https://doi.org/10.1016/j.electacta.2016.06.024

    Article  CAS  Google Scholar 

  157. Pang D, Ma C, Chen D et al (2019) Silver nanoparticle-functionalized poly (3, 4-ethylenedioxythiophene): polystyrene film on glass substrate for electrochemical determination of nitrite. Org Electron 75:105374. https://doi.org/10.1016/j.orgel.2019.105374

    Article  CAS  Google Scholar 

  158. Menart E, Jovanovski V, Hočevar SB (2015) Silver particle-decorated carbon paste electrode based on ionic liquid for improved determination of nitrite. Electrochem Commun 52:45–48. https://doi.org/10.1016/j.elecom.2015.01.017

    Article  CAS  Google Scholar 

  159. Kaladevi G, Wilson P, Pandian K (2020) Simultaneous and selective electrochemical detection of sulfite and nitrite in water sources using homogeneously dispersed Ag nanoparticles over PANI/rGO nanocomposite. J Electrochem Soc 167:027514. https://doi.org/10.1149/1945-7111/ab6973

    Article  CAS  Google Scholar 

  160. Manea F, Remes A, Radovan C et al (2010) Simultaneous electrochemical determination of nitrate and nitrite in aqueous solution using Ag-doped zeolite-expanded graphite-epoxy electrode. Talanta 83:66–71. https://doi.org/10.1016/j.talanta.2010.08.042

    Article  CAS  PubMed  Google Scholar 

  161. Sonkar PK, Ganesan V (2015) Synthesis and characterization of silver nanoparticle-anchored amine-functionalized mesoporous silica for electrocatalytic determination of nitrite. J Solid State Electrochem 19:2107–2115. https://doi.org/10.1007/s10008-014-2725-3

    Article  CAS  Google Scholar 

  162. Jayabal S, Ramaraj R (2013) Synthesis of core/shell Au/Ag nanorods embedded in functionalized silicate sol–gel matrix and their applications in electrochemical sensors. Electrochim Acta 88:51–58. https://doi.org/10.1016/j.electacta.2012.10.065

    Article  CAS  Google Scholar 

  163. Wang Z, Liao F, Guo T et al (2012) Synthesis of crystalline silver nanoplates and their application for detection of nitrite in foods. J Electroanal Chem 664:135–138. https://doi.org/10.1016/j.jelechem.2011.11.006

    Article  CAS  Google Scholar 

  164. Kaladevi G, Meenakshi S, Pandian K et al (2017) Synthesis of well-dispersed silver nanoparticles on polypyrrole/reduced graphene oxide nanocomposite for simultaneous detection of toxic hydrazine and nitrite in water sources. J Electrochem Soc 164:B620–B631. https://doi.org/10.1149/2.0611713jes

    Article  CAS  Google Scholar 

  165. Ma C, Qian Y, Zhang S et al (2018) Temperature-controlled ethanolamine and Ag-nanoparticle dual-functionalization of graphene oxide for enhanced electrochemical nitrite determination. Sens Actuators B 274:441–450. https://doi.org/10.1016/j.snb.2018.08.012

    Article  CAS  Google Scholar 

  166. Bai Z, Zhou C, Gao N et al (2016) A chitosan–Pt nanoparticles/carbon nanotubes-doped phosphomolybdate nanocomposite as a platform for the sensitive detection of nitrite in tap water. RSC Adv 6:937–946. https://doi.org/10.1039/c5ra19383d

    Article  CAS  Google Scholar 

  167. Zhang X, Li S, Xu J et al (2019) A high-performance amperometric nitrite sensor platform based on intertwined platinum@tricobalt tetroxide hybrid composites. J Electrochem Soc 166:B1370–B1377. https://doi.org/10.1149/2.1331914jes

    Article  CAS  Google Scholar 

  168. Sheng Q, Liu D, Zheng J (2017) A nonenzymatic electrochemical nitrite sensor based on Pt nanoparticles loaded Ni(OH) 2/multi-walled carbon nanotubes nanocomposites. J Electroanal Chem 796:9–16. https://doi.org/10.1016/j.jelechem.2017.04.050

    Article  CAS  Google Scholar 

  169. Ning Y-F, Guo J-S, Nie B et al (2014) A Pt nanoparticle electrode for nitrite determination in solution. J Electrochem Soc 161:H220–H224. https://doi.org/10.1149/2.058404jes

    Article  CAS  Google Scholar 

  170. Saber-Tehrani M, Pourhabib A, Husain SW et al (2012) A simple and efficient electrochemical sensor for nitrite determination in food samples based on Pt nanoparticles distributed poly(2-aminothiophenol) modified electrode. Food Anal Methods 6:1300–1307. https://doi.org/10.1007/s12161-012-9543-y

    Article  Google Scholar 

  171. Zhang Y, Yuan R, Chai Y et al (2012) Amperometric biosensor for nitrite and hydrogen peroxide based on hemoglobin immobilized on gold nanoparticles/polythionine/platinum nanoparticles modified glassy carbon electrode. J Chem Technol Biotechnol 87:570–574. https://doi.org/10.1002/jctb.2753

    Article  CAS  Google Scholar 

  172. Zhang S, Li B-Q, Zheng J-B (2015) An electrochemical sensor for the sensitive determination of nitrites based on Pt–PANI–graphene nanocomposites. Anal Methods 7:8366–8372. https://doi.org/10.1039/c5ay01710f

    Article  Google Scholar 

  173. Vijayaraj K, Jin S-H, Park D-S (2017) A sensitive and selective nitrite detection in water using graphene/platinum nanocomposite. Electroanalysis 29:345–351. https://doi.org/10.1002/elan.201600133

    Article  CAS  Google Scholar 

  174. Abdel Hameed RM, Medany SS (2019) Construction of core-shell structured nickel@platinum nanoparticles on graphene sheets for electrochemical determination of nitrite in drinking water samples. Microchem J 145:354–366. https://doi.org/10.1016/j.microc.2018.10.045

    Article  CAS  Google Scholar 

  175. Zhou Y, Xian H, Li F et al (2010) Construction of hybrid nanocomposites containing Pt nanoparticles and poly(3-methylthiophene) nanorods at a glassy carbon electrode: characterization, electrochemistry, and electrocatalysis. Electrochim Acta 55:5905–5910. https://doi.org/10.1016/j.electacta.2010.05.043

    Article  CAS  Google Scholar 

  176. Wang S, Yin Y, Lin X (2004) Cooperative effect of Pt nanoparticles and Fe(III) in the electrocatalytic oxidation of nitrite. Electrochem Commun 6:259–262. https://doi.org/10.1016/j.elecom.2003.12.008

    Article  CAS  Google Scholar 

  177. Zhang M-L, Huang D-K, Cao Z et al (2015) Determination of trace nitrite in pickled food with a nano-composite electrode by electrodepositing ZnO and Pt nanoparticles on MWCNTs substrate. LWT - Food Sci Technol 64:663–670. https://doi.org/10.1016/j.lwt.2015.06.025

    Article  CAS  Google Scholar 

  178. Mani V, Dinesh B, Chen SM et al (2014) Direct electrochemistry of myoglobin at reduced graphene oxide-multiwalled carbon nanotubes-platinum nanoparticles nanocomposite and biosensing towards hydrogen peroxide and nitrite. Biosens Bioelectron 53:420–427. https://doi.org/10.1016/j.bios.2013.09.075

    Article  CAS  PubMed  Google Scholar 

  179. Li J, Lin X (2007) Electrocatalytic reduction of nitrite at polypyrrole nanowire–platinum nanocluster modified glassy carbon electrode. Microcheml Journal 87:41–46. https://doi.org/10.1016/j.microc.2007.05.005

    Article  CAS  Google Scholar 

  180. Zhang X, Shi X, Wang C (2009) Electrodeposition of Pt nanoparticles on carbon nanotubes-modified polyimide materials for electrocatalytic applications. Catal Commun 10:610–613. https://doi.org/10.1016/j.catcom.2008.11.011

    Article  CAS  Google Scholar 

  181. Chen S-S, Shi Y-C, Wang A-J et al (2017) Free-standing Pt nanowire networks with clean surfaces: highly sensitive electrochemical detection of nitrite. J Electroanal Chem 791:131–137. https://doi.org/10.1016/j.jelechem.2017.03.016

    Article  CAS  Google Scholar 

  182. Miao P, Shen M, Ning L et al (2011) Functionalization of platinum nanoparticles for electrochemical detection of nitrite. Anal Bioanal Chem 399:2407–2411. https://doi.org/10.1007/s00216-010-4642-3

    Article  CAS  PubMed  Google Scholar 

  183. Yang B, Bin D, Wang H et al (2015) High quality Pt–graphene nanocomposites for efficient electrocatalytic nitrite sensing. Colloids Surf A 481:43–50. https://doi.org/10.1016/j.colsurfa.2015.04.027

    Article  CAS  Google Scholar 

  184. Bai W, Sheng Q, Zheng J (2016) Morphology controlled synthesis of platinum nanoparticles performed on the surface of graphene oxide using a gas-liquid interfacial reaction and its application for high-performance electrochemical sensing. Analyst 141:4349–4358. https://doi.org/10.1039/c6an00632a

    Article  CAS  PubMed  Google Scholar 

  185. Yu C, Wang Y, Wang L et al (2013) Nanostructured biosensors built with layer-by-layer electrostatic assembly of hemoglobin and Fe(3)O(4)@Pt nanoparticles. Colloids Surf B Biointerfaces 103:231–237. https://doi.org/10.1016/j.colsurfb.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  186. Etesami M, Mohamed N (2016) Preparation of Pt/MWCNTs catalyst by Taguchi method for electrooxidation of nitrite. J Anal Chem 71:185–194. https://doi.org/10.1134/s1061934816020040

    Article  CAS  Google Scholar 

  187. Liang F, Jia M, Hu J (2012) Pt-implanted indium tin oxide electrodes and their amperometric sensor applications for nitrite and hydrogen peroxide. Electrochim Acta 75:414–419. https://doi.org/10.1016/j.electacta.2012.05.033

    Article  CAS  Google Scholar 

  188. Qiu X, Fu G, Zhao Y et al (2013) Water-based synthesis and sensing application of polyallylamine functionalized platinum nanodendrite assemblies. J Mater Chem A 1:14874–14878. https://doi.org/10.1039/c3ta13218h

    Article  CAS  Google Scholar 

  189. Liu Y, Zhou J, Gong J et al (2013) The investigation of electrochemical properties for Fe3O4@Pt nanocomposites and an enhancement sensing for nitrite. Electrochim Acta 111:876–887. https://doi.org/10.1016/j.electacta.2013.08.077

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant No. 21706241, U1404503, 21403053), China Post-doctoral Science Foundation (2020M672305, 2018M642791), and Key Scientific and Technological Project of Henan Province (202102210042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-He Yang.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, T. & Yang, JH. Precious metal nanomaterial-modified electrochemical sensors for nitrite detection. Ionics 28, 2041–2064 (2022). https://doi.org/10.1007/s11581-022-04509-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04509-3

Keywords

Navigation