Skip to main content
Log in

An electrochemical nanosensor for simultaneous determination of hydroxylamine and nitrite using oxadiazole self-assembled on silver nanoparticle-modified glassy carbon electrode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Environmental pollutions are causing serious health problems for human, and their quantification is still a big challenge. For determination of hydroxylamine and nitrite as two important environmental pollutants, a novel and highly sensitive electrochemical nanosensor has been developed for the simultaneous determination of hydroxylamine and nitrite in the presence of nine interference moieties using oxadiazole self-assembled on silver nanoparticle-modified glassy carbon electrode (OAgNPs-GCE). The charge transfer coefficient, α, and the charge transfer rate constant, k s, of oxadiazole adsorbed on AgNPs were calculated. The OAgNPs-GCE displayed excellent electrochemical catalytic activities toward the oxidation of hydroxylamine. The detection limit of 0.10 μM and two linear calibration ranges of 0.45–69.4 and 69.4–833.3 μM are obtained for hydroxylamine determination at OAgNPs-GCE surface using a differential pulse voltammetric method. The investigated method showed good stability, reproducibility, and repeatability and high recovery in real samples. Moreover, this modified electrode is found quite effective in simultaneous determination of hydroxylamine and nitrite in the presence of nine moieties. OAgNPs-GCE has been applied to the determination of hydroxylamine and nitrite at water samples with acceptable results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ensafi AA, Heydari-Bafrooie E, Rezaei B (2013) Simultaneous detection of hydroxylamine and phenol using p-aminophenol modified carbon nanotube paste electrode. Chinese J catal 34:1768–1775. doi:10.1016/S1872-2067(12)60652-4

    Article  CAS  Google Scholar 

  2. Hofman T, Lees H (1953) The biochemistry of the nitrifying organisms. 4. The respiration and intermediary metabolism of Nitrosomonas. Biochem J 54:579–583 PMC1269098

    Article  CAS  Google Scholar 

  3. Kannan P, Abraham John S (2010) Highly sensitive determination of hydroxylamine using fused gold nanoparticles immobilized on sol–gel film modified gold electrode. Anal Chim Acta 663:158–164. doi:10.1016/j.aca.2010.01.045

    Article  CAS  Google Scholar 

  4. Li J, Li n X (2007) Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle—polypyrrole nanowire modified glassy carbon electrode. Sensor Actuat B Chem 126(2007):527–535. doi:10.1016/j.snb.2007.03.044

    Article  CAS  Google Scholar 

  5. Zhang C, Wang G, Liu M, Feng Y, Zhang Z, Fang B (2010) A hydroxylamine electrochemical sensor based on electrodeposition of porous ZnO nanofilms onto carbon nanotubes films modified electrode. Electrochim Acta 55:2835–2840. doi:10.1016/j.electacta.2009.12.068

    Article  CAS  Google Scholar 

  6. Zare HR, Sobhani Z, Mazloum-Ardakani M (2007) Electrocatalytic oxidation of hydroxylamine at a rutin multi-wall carbon nanotubes modified glassy carbon electrode: improvement of the catalytic activity. Sensor Actuat B Chem 126:641–647. doi:10.1016/j.snb.2007.04.015

    Article  CAS  Google Scholar 

  7. Bui MPN, Pham XH, Han KN, Li CA, Lee EK, Chang HJ, Seong GH (2010) Electrochemical sensing of hydroxylamine by gold nanoparticles on single-walled carbon nanotube films. Electrochem Commun 12:250–253. doi:10.1016/j.elecom.2009.12.006

    Article  CAS  Google Scholar 

  8. Calfuman K, Aguirre MJ, Rosales PC, Bollo S, Llusar R, Isaacs M (2011) Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode. Electrochim Acta 56:8484–8491. doi:10.1016/j.electacta.2011.07.057

    Article  CAS  Google Scholar 

  9. Wen ZH, Kang TF (2004) Determination of nitrite using sensors based on nickel phthalocyanine polymer modified electrodes. Talanta 62:351–355. doi:10.1016/j.talanta.2003.08.003

    Article  CAS  Google Scholar 

  10. Afkhami A, Madrakian T, Ghaedi H, Khanmohammadi H (2012) Construction of a chemically modified electrode for the selective determination of nitrite and nitrate ions based on a new nanocomposite. Electrochim Acta 66:255–264. doi:10.1016/j.electacta.2012.01.089

    Article  CAS  Google Scholar 

  11. Nasirizadeh N, Aghayizadeh MM, Bidoki SM, Yazdanshenas ME (2013) A novel sensor of quinazolin derivative self-assembled monolayers over silver nanoparticles for the determination of hydroxylamine. Int J Electrochem Sci 8:11264–11277

    CAS  Google Scholar 

  12. Zare HR, Nasirizadeh N (2012) Fabrication, characterization and analytical performance of the hydroxylamine sensor based on an oracet blue multi-walled carbon nanotubes film deposited on an electrode surface. J Braz Chem Soc 23:1070–1077. doi:10.1590/S0103-50532012000600011

    Article  CAS  Google Scholar 

  13. Tuyen DP, PhucQuan D, Binh NH, Nguyen VC, Lam TD, Huyen LT, Nguyen LH, Viet PH, Loc NT, Huy TQ (2014) A highly sensitive electrode modified with graphene, gold nanoparticles, and molecularly imprinted over-oxidized polypyrrole for electrochemical determination of dopamine. J Mol Liq 198:307–312. doi:10.1016/j.molliq.2014.07.029

    Article  Google Scholar 

  14. Shah AT, Din MI, Farooq U, Butt MTZ, Athara M, Chaudhary MA, Ahmad MN, Mirza ML (2012) Fabrication of nickel nanoparticles modified electrode by reverse microemulsion method and its application in electrolytic oxidation of ethanol. Colloid Surface A 405:19–21. doi:10.1016/j.colsurfa.2012.04.022

    Article  CAS  Google Scholar 

  15. Ghanbari K (2014) Fabrication of silver nanoparticles–polypyrrole composite modified electrode for electrocatalytic oxidation of hydrazine. Synthetic Met 195:234–240. doi:10.1016/j.synthmet.2014.06.014

    Article  CAS  Google Scholar 

  16. Zare HR, Ghanbari Z, Nasirizadeh N, Benvidi A (2013) Simultaneous determination of adrenaline, uric acid, and cysteine using bifunctional electrocatalyst of ruthenium oxide nanoparticles. C R Chimie 16:287–295. doi:10.1016/j.crci.2013.01.004

    Article  CAS  Google Scholar 

  17. Zare HR, Chatraei F (2011) Preparation and electrochemical characteristics of electrodeposited acetaminophen on ruthenium oxide nanoparticles and its role as a sensor for simultaneous determination of ascorbic acid, dopamine and N-acetyl-1-cysteine. Sensor Actuat B Chem 160:1450–1457. doi:10.1016/j.snb.2011.10.012

    Article  CAS  Google Scholar 

  18. Choi I, Ahn SH, Kim JJ, Kwon OJ (2011) Preparation of Pt–shell–Pd–core nanoparticle with electroless deposition of copper for polymer electrolyte membrane fuel cell. Appl Catal B 102:608–613. doi:10.1016/j.apcatb.2010.12.047

    Article  CAS  Google Scholar 

  19. Shi J, Li XS, Hu YQ, Hua YX (2008) Electro-deposition of platinum nanoparticles on 4-mercaptobenzene-functionalized multi-walled carbon nanotubes. J Solid State Electr 12:1555–1559. doi:10.1007/s10008-008-0507-5

    Article  CAS  Google Scholar 

  20. Garcia G, Florez-Montano J, Hernandez-Creus A, Pastor E, Planes GA (2011) Methanol electrooxidation at mesoporous Pt and Pt-Ru electrodes: a comparative study with carbon supported materials. J Power Sources 196:2979–2986. doi:10.1016/j.jpowsour.2010.11.085

    Article  CAS  Google Scholar 

  21. Majumder M, Chakraborty AK, Biswas B, Chowdhury A, Mallik B (2011) Indication of formation of charge density waves in silver nanoparticles dispersed poly(methyl methacrylate) thin films. Synth Met 161:1390–1399. doi:10.1016/j.synthmet.2011.05.007

    Article  CAS  Google Scholar 

  22. Navaladian S, Viswanathan B, Viswanath RP, Varadarajan TK (2007) Thermal decomposition as route for silver nanoparticles. Nanoscale Res Lett 2:44–48. doi:10.1007/s11671-006-9028-2

    Article  CAS  Google Scholar 

  23. Murugan E, Jebaranjitham JN (2012) Synthesis and characterization of silver nanoparticles supported on surface-modified poly (N-vinylimidazale) as catalysts for the reduction of 4-nitrophenol. J Mol Catal A Chem 365:128–135. doi:10.1016/j.molcata.2012.08.021

    Article  CAS  Google Scholar 

  24. Vimala K, Mohan YM, Sivudu KS, Varaprasad K, Ravindra S, Reddy NN, Padma Y, Sreedhar B, MohanaRaju K (2010) Fabrication of porous chitosan films impregnated with silver nanoparticles: a facile approach for superior antibacterial application. Colloid Surf B 76:248–258. doi:10.1016/j.colsurfb.2009.10.044

    Article  CAS  Google Scholar 

  25. Narang J, Chauhan N, Jain P, Pundirb CS (2012) Silver nanoparticles/multi walled carbon nanotube/polyaniline film for amperometric glutathione biosensor. Int J Biol Macromol 50:672–678. doi:10.1016/j.ijbiomac.2012.01.023

    Article  CAS  Google Scholar 

  26. Rohani Moghadam M, Akbarzadeh S, Nasirizadeh N (2016) An electrochemical sensor for the determination of thiourea using modified glassy carbon electrode. Microchim Acta 183:1069–1077. doi:10.1007/s00604-015-1723-1

    Article  CAS  Google Scholar 

  27. Nasirizadeh N, Zare HR, Fakhari AR, Ahmar H, Ahmadzadeh MR, Naeimi A (2011) A study of the electrochemical behavior of an oxadiazole derivative electrodeposited on multi-wall carbon nanotube-modified electrode and its application as a hydrazine sensor. J Solid State Electr 15:2683–2693. doi:10.1007/s10008-010-1259-6

    Article  CAS  Google Scholar 

  28. Nasirizadeh N, Shekari Z, Zare HR, Ardakani SAY, Ahmar H (2013) Developing a sensor for the simultaneous determination of dopamine, acetaminophen and tryptophan in pharmaceutical samples using a multi-walled carbon nanotube and oxadiazole modified glassy carbon electrode. J Braz Chem Soc 24:1846–1856 http://dx.doi.org/10.5935/0103-5053.20130230

    Google Scholar 

  29. Fakhari AR, Davarani SSH, Ahmar H, Hasheminasab K, Khavasi HR (2009) A facile electrochemical method for the synthesis of 5-phenyl-1,3,4-oxadiazol-2-yl-thio-benzene-1,2-diol derivatives. J Heterocyclic Chem 46:443–446. doi:10.1002/jhet.86

    Article  CAS  Google Scholar 

  30. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28. doi:10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  31. Bard AJ, Faulkner LR (2001) Electrochemical methods. Fundamentals and applications. John Wiley & Sons, Inc.: New York.

  32. Andrieux CP, Saveant JM (1978) Heterogeneous (chemically modified electrodes, polymer electrodes) vs. homogeneous catalysis of electrochemical reactions. J Electroanal Chem 93:163–168. doi:10.1016/S0022-0728(78)80230-7

    Article  CAS  Google Scholar 

  33. Zare HR, Nasirizadeh N (2006) Electrocatalytic characteristics of hydrazine and hydroxylamine oxidation at coumestan modified carbon paste electrode. Electroanalysis 18:507–512. doi:10.1002/elan.200503408

    Article  CAS  Google Scholar 

  34. Zare HR, Nasirizadeh N, Ajamain H, Sahragard A (2011) Preparation, electrochemical behavior and electrocatalytic activity of chlorogenic acid multi-wall carbon nanotubes as a hydroxylamine sensor. Mat Sci Eng C 31:975–982. doi:10.1016/j.msec.2011.02.023

    Article  CAS  Google Scholar 

  35. Zare HR, Chatraei F, Nasirizadeh N (2010) Differential pulse voltammetric determination of hydroxylamine at an indenedione derivative electrodeposited on a multi-wall carbon nanotube modified glassy carbon electrode. J Braz Chem Soc 21:1977–1985 http://dx.doi.org/10.1590/S0103-50532010001000025

    Article  CAS  Google Scholar 

  36. Foroughi MM, Beitollahi H, Tajik S, Hamzavi M, Parvan H (2014) Hydroxylamine electrochemical sensor based on a modified carbon nanotube paste electrode: application to determination of hydroxylamine in water samples. Int J Electrochem Sci 9:2955–2965

    Google Scholar 

  37. Zare HR, Hashemi SH, Benvidi A (2010) Electrodeposited nano-scale islands of ruthenium oxide as a bifunctional electrocatalyst for simultaneous catalytic oxidation of hydrazine and hydroxylamine. Anal Chim Acta 668:182–187. doi:10.1016/j.aca.2010.04.028

    Article  CAS  Google Scholar 

  38. Yuan B, Xu C, Liu L, Shi Y, Li S, Zhang R, Zhang D (2014) Polyethylenimine-bridged graphene oxide-gold film on glassy carbon electrode and its electrocatalytic activity toward nitrite and hydrogen peroxide. Sensors Actuators B Chem 198:55–61

    Article  CAS  Google Scholar 

  39. Yuan B, Zhang J, Zhang R, Shi H, Wang N, Li J, Ma F, Zhang D (2016) Cu-based metal–organic framework as a novel sensing platform for the enhanced electro-oxidation of nitrite. Sensors Actuators B Chem 222:632–637

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partly supported by a grant (No. 51054931001005) sponsored by the Islamic Azad University of Yazd (Yazd, Iran).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Hajisafari.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajisafari, M., Nasirizadeh, N. An electrochemical nanosensor for simultaneous determination of hydroxylamine and nitrite using oxadiazole self-assembled on silver nanoparticle-modified glassy carbon electrode. Ionics 23, 1541–1551 (2017). https://doi.org/10.1007/s11581-016-1962-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1962-0

Keywords

Navigation