Skip to main content

Advertisement

Log in

Advances in materials and structures of supercapacitors

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Supercapacitors are a new type of energy storage device between batteries and conventional electrostatic capacitors. Compared with conventional electrostatic capacitors, supercapacitors have outstanding advantages such as high capacity, high power density, high charging/discharging speed, and long cycling life, which make them widely used in many fields such as electronics, aerospace, and vehicles. However, the low energy density of supercapacitors limits their large-scale applications. Therefore, it is of great significance to develop high energy density supercapacitors and use as power sources for practical devices. In order to improve the performance of supercapacitors, the study of materials and structures is very important. In this paper, the research progresses of common materials and structures of some supercapacitors are reviewed. The related properties and device characterizations of carbon-based, conductive polymer and metal compound electrode materials are introduced. The structures of electrode materials, structures of devices, and corresponding properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2020, Elsevier. b Schematic for the synthesis of G-MC using silica nanospheres as templates [9]. Copyright 2018, Wiley. c 3D graphene framework manufacturing schematic [10]. Copyright 2016, Elsevier

Fig. 3

Copyright 2017, RSC

Fig. 4

Copyright 2018, Elsevier. b Preparation of carbon black/polyimide composites [33]. Copyright 2017, Wiley. c Structure diagram of 3D GA-GN [14]. Copyright 2018, Elsevier

Fig. 5

Copyright 2017, American Chemical Society. b Composition and structure characterization of Ni–Co LDH/CFC [45]. Copyright, Springer Nature

Fig. 6

Copyright 2020, Springer Nature. b Synthesis mechanism of polythiophene [52]. Copyright 2014, Wiley. c Schematic diagram of the manufacturing process of polyaniline nanowire arrays/3D graphene composites [47]. Copyright, Wiley

Fig. 7

Copyright 2020, Elsevier. b MnCo2O4/3DG preparation method [53]. Copyright 2019, Elsevier

Fig. 8

Copyright 2020, Wiley

Fig. 9

Copyright 2013, RSC

Fig. 10

Copyright 2018, Wiley

Fig. 11

Copyright 2019, Springer Nature. b Stretchable solid state supercapacitor with graphene woven fabric as electrode material [85]. Copyright 2015, Elsevier. c A schematic diagram of the preparation process of Ni2S3/3D rGO on foamed nickel [73]. Copyright 2018, Wiley

Fig. 12

Copyright 2017, Wiley

Similar content being viewed by others

References

  1. Liu SD, Kang L, Jun SC (2021) Challenges and strategies toward cathode materials for rechargeable potassium-ion batteries. Adv Mater 2004689:1–40. https://doi.org/10.1002/adma.202004689

    Article  CAS  Google Scholar 

  2. Wang P, Sun S, Wang S, Zhang Y, Zhang GQ, Li YN, Li SD, Zhou C, Fang SM (2017) Ultrastable MnO2 nanoparticle/three-dimensional N-doped reduced graphene oxide composite as electrode material for supercapacitor. J Appl Electro Chem 47:1293–1303. https://doi.org/10.1007/s10800-017-1122-x

    Article  CAS  Google Scholar 

  3. Liu W, Song MS, Kong B, Cui Y (2017) Flexible and stretchable energy storage: recent and future perspectives. Adv Mater 29:1603436. https://doi.org/10.1002/adma.201603436

    Article  CAS  Google Scholar 

  4. Shen GZ, Lu XH, Liu B, Wang XF, Chen D, Tong YX (2014) Flexible energy-storage devices: design consideration and recent progress. Adv Mater 26:4763–4782. https://doi.org/10.1002/adma.201400910

    Article  CAS  PubMed  Google Scholar 

  5. Veronica A, Patrice S, Bruce D (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energ Environ Sci 7:1597–1614. https://doi.org/10.1039/C3EE44164D

    Article  Google Scholar 

  6. Panda PK, Grigoriev A, Mishra YK, Ahuja R (2020) Progress in supercapacitors: roles of two dimensional nanotubular materials. Nanoscale Adv 2:70–108. https://doi.org/10.1039/C9NA00307J

    Article  Google Scholar 

  7. Geim A, Novoselov K (2007) The rise of graphene. Nat Mater 6:183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  PubMed  Google Scholar 

  8. Bokhari SW, Siddique AH, Sherrell PC, Yue X, Karumbaiah KM, Wei S, Ellis AV, Gao W (2020) Advances in graphene-based supercapacitor electrodes. Energy Rep 6:2768–2784. https://doi.org/10.1016/j.egyr.2020.10.001

    Article  Google Scholar 

  9. SalunkheR R, Wang J, Alowasheeir A, Lin J, Malgras V, Bando Y, Zakaria MB, Alshehri AA, Kim J, Yamauchi Y, Wu KC (2018) Three-dimensional macroporous graphitic carbon for supercapacitor application. Chem Select 3:4522. https://doi.org/10.1002/slct.201800545

    Article  CAS  Google Scholar 

  10. Gao YD, Zhang YY, Zhang Y, Xie LJ, Li XM, Su FY, Wei XX, Xu ZW, Chen CM, Cai R (2016) Three-dimensional paper-like graphene framework with highly orientated laminar structure as binder-free supercapacitor electrode. J Nat Gas Chem 1:49–54. https://doi.org/10.1016/j.jechem.2015.11.011

    Article  Google Scholar 

  11. Ramadoss A, Yoon KY, Kwak MJ, Kim SI, Ryu ST, Jang JH (2017) Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-dimensional-graphene/graphite-paper. J Power Sources 337:159–165. https://doi.org/10.1016/j.jpowsour.2016.10.091

    Article  CAS  Google Scholar 

  12. Virendra S, Daeha J, Lei Z, Soumen D, Saiful IK, Sudipta S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271. https://doi.org/10.1016/j.pmatsci.2011.03.003

    Article  CAS  Google Scholar 

  13. Chae H, Siberio-Pérez D, Kim J, Go Y, Eddaoudi M, Matzger A, O’Keeffe M, Yaghi O & Materials Design and Discovery Group (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:523–527. https://doi.org/10.1038/nature02311

    Article  CAS  Google Scholar 

  14. Feng H, Xie P, Xue S, Li L, Hou X, Liu Z, Wu D, Wang L, Chu P (2018) Synthesis of three-dimensional porous reduced graphene oxide hydrogel/carbon dots for high-performance supercapacitor. J Electroanal Chem 808:321–328. https://doi.org/10.1016/j.jelechem.2017.12.046

    Article  CAS  Google Scholar 

  15. Shao CX, Xu T, Gao J, Liang Y, Zhao Y, Qu LT (2017) Flexible and integrated supercapacitor with tunable energy storage. Nanoscale 9:12324–12329. https://doi.org/10.1039/c7nr04889k

    Article  CAS  PubMed  Google Scholar 

  16. Zhang MW, Hou CY, Halder A, Wang HZ, Chi QJ (2017) Graphene papers: smart architecture and specific functionalization for biomimetics, electrocatalytic sensing and energy storage. Mater Chem Front 1:37–60. https://doi.org/10.1039/c6qm00145a

    Article  CAS  Google Scholar 

  17. Hu X, Xu Z, Gao C (2012) Multifunctional, supramolecular, continuous artificial nacre fibres. Sci Rep 2:767. https://doi.org/10.1038/srep00767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou FG (2019) Research progress of printing technology in graphene-based flexible all-solid supercapacitors. Guangdong Chem. Indus. 7:110–111. CNKI:SUN:GDHG.0.2019–07–050

  19. Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10:424–428. https://doi.org/10.1038/nmat3001

    Article  CAS  PubMed  Google Scholar 

  20. Yoon JC, Lee JS, Kim SI (2013) Three-dimensional graphene nano-networks with high quality and mass production capability via precursor-assisted chemical vapor deposition. Sci Rep 3:1788–1795. https://doi.org/10.1038/srep01788

    Article  CAS  PubMed Central  Google Scholar 

  21. He YM, Chen WJ, Li XD, Zhang ZX, Fu JC, Zhao CH, Xie EQ (2013) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7:174–182. https://doi.org/10.1021/nn304833s

    Article  CAS  PubMed  Google Scholar 

  22. Lee JS, Kim SI, Yoon JC, Jang JH (2013) Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor. ACS Nano 7:6047–6055. https://doi.org/10.1021/nn401850z

    Article  CAS  PubMed  Google Scholar 

  23. Shi JL, Tang C, Peng HJ, Zhu L, Cheng XB, Huang JQ, Zhu WC, Zhang Q (2015) 3D mesoporous graphene: CVD self-assembly on porous oxide templates and applications in high-stable Li-S batteries. Small 11:5243–5252. https://doi.org/10.1002/smll.201501467

    Article  CAS  PubMed  Google Scholar 

  24. Zhao B, Huang SY, Wang T (2015) Hollow SnO2&Co3O4 core-shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium ion batteries. J Power Sources 298:83–91. https://doi.org/10.1016/j.jpowsour.2015.08.043

    Article  CAS  Google Scholar 

  25. Burress JW, Gadipelli S, Ford J (2010) Graphene oxide frame-work materials: theoretical predictions and experimental results. Angew Chem 122:8902–8904. https://doi.org/10.1002/anie.201003328

    Article  CAS  Google Scholar 

  26. Shi JL, Tang C, Peng HJ, Zhu L, Cheng XB, Huang JQ, Zhu WC, Zhang Q (2013) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7:174–182. https://doi.org/10.1021/nn304833s

    Article  CAS  Google Scholar 

  27. Worsley MA, Pauzaskie PJ, Olson TY, Biener J, Satcher JH Jr, Baumann TF (2010) Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc 132:14067–14069. https://doi.org/10.1021/ja1072299

    Article  CAS  PubMed  Google Scholar 

  28. Xia XH, Chao DL, Zhang YQ, Shen ZX, Fan HJ (2014) Three-dimensional graphene and their integrated electrodes. Nano Today 9:785–807. https://doi.org/10.1016/j.nantod.2014.12.001

    Article  CAS  Google Scholar 

  29. Choi BG, Yang MH, Hong WH, Choi JW, Huh YS (2012) 3D microporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6:4020–4028. https://doi.org/10.1021/nn3003345

    Article  CAS  PubMed  Google Scholar 

  30. Zhou GM, Paek E, Hwang GS, Manthiram A (2015) Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun 6:7760–7770. https://doi.org/10.1038/ncomms8760

    Article  CAS  PubMed  Google Scholar 

  31. Shi QW, Hou CY, Wang HZ et al (2015) Rapid formation of superelastic 3D reduced graphene oxide networks with simultaneous removal of HI utilizing NIR irradiation. J Mater Chem A 3:9882–9889. https://doi.org/10.1039/c5ta00920k

    Article  CAS  Google Scholar 

  32. Zhang QQ, Wang Y, Zhang BQ, Zhao K, He P, Huang B (2018) 3D superelastic graphene aerogel-nanosheet hybrid hierarchical nanostructures as high-performance supercapacitor electrodes. Carbon 127:449–458. https://doi.org/10.1016/j.carbon.2017.11.037

    Article  CAS  Google Scholar 

  33. Yu J, Zhang T, Xu L, Huang P (2017) Synthesis and characterization of aramid fiber-reinforced polyimide/carbon black composites and their use in a supercapacitor. Chinese J Chem 35:1586–1594. https://doi.org/10.1002/cjoc.201700018

    Article  CAS  Google Scholar 

  34. Ángel-Meraz ED, Orantes-Flores HDJ, Morales ER, Sevilla-Camacho PY, Castillo-Palomera R (2020) The use of activated carbon from coffee endocarp for the manufacture of supercapacitors. J Mater Sci-Mater El 7:7547–7554. https://doi.org/10.1007/s10854-020-03123-1

    Article  CAS  Google Scholar 

  35. Sundriyal S, Shrivastav V, Pham HD, Mishra S, Deep A, Dubal DP (2021) Advances in bio-waste derived activated carbon for supercapacitors: trends, challenges and prospective. Resour Conserv Recy 169:105548. https://doi.org/10.1016/j.resconrec.2021.105548

    Article  Google Scholar 

  36. Wang XF (2005) The performance of carbon nanotubes based supercapacitor and application in GSM portable communication. J Power Sources 1:27–30. https://doi.org/10.3969/j.issn.1002-087X.2005.01.009

    Article  CAS  Google Scholar 

  37. Frackowiak E, Jurewicz K, Delpeux S, Beguin F (2002) Nanotubular materials as electrodes for supercapacitors. J Power Sources 77–78:213–219. https://doi.org/10.1016/S0378-3820(02)00078-4

    Article  Google Scholar 

  38. Emmenegger C, Mauron P, Sudan P, Wenger P, Hermann V, Gallay R, Zuttel A (2003) Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials. J Power Sources 124:321–329. https://doi.org/10.1016/S0378-7753(03)00590-1

    Article  CAS  Google Scholar 

  39. Frackowiak E, Delpeux S, Jurewicz K, Szostak K, Cazorla-Amoros D, Beguin F (2002) Enhanced capacitance of carbon nanotubes through chemical activation. Chem Phys Lett 361:35–41. https://doi.org/10.1016/S0009-2614(02)00684-X

    Article  CAS  Google Scholar 

  40. Chen B, Jiang Y, Tang X, Pan Y, Hu S (2017) Fully packaged carbon nanotube supercapacitors by direct ink writing on flexible substrates. ACS Appl Mater Interfaces 934:28433–28440. https://doi.org/10.1021/acsami.7b06804

    Article  CAS  Google Scholar 

  41. Zheng Y, Zhao W, Jia DD, Cui L, Liu JQ (2019) Thermally-treated and acid-etched carbon fiber cloth based on pre-oxidized polyacrylonitrile as self-standing and high area-capacitance electrodes for flexible supercapacitors. Chem Eng J 364:70–78. https://doi.org/10.1016/j.cej.2019.01.076

    Article  CAS  Google Scholar 

  42. Li Y, Shan L, Sui Y, Qi J, Liu J (2019) Ultrathin Ni–Co LDH nanosheets grown on carbon fiber cloth via electrodeposition for high-performance supercapacitors. J Mater Sci Mater Electron 3014:13360–13371. https://doi.org/10.1007/s10854-019-01703-4

    Article  CAS  Google Scholar 

  43. Wu JX, Hong Y, Wang BJ (2018) The applications of carbon nanomaterials in fiber-shaped energy storage devices. J Semicond 391:011004. https://doi.org/10.1088/1674-4926/39/1/011004

    Article  CAS  Google Scholar 

  44. Cheng F, Yang XP, Zhang SP, Lu W (2020) Boosting the supercapacitor performances of activated carbon with carbon nanomaterials. J Power Sources 450:227678. https://doi.org/10.1016/j.jpowsour.2019.227678

    Article  CAS  Google Scholar 

  45. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 412:797–828. https://doi.org/10.1039/C1CS15060J

    Article  Google Scholar 

  46. Yang Y, Chen Z, Song X, Zhu B, Hsiai T, Wu P, Xiong R, Shi J, Chen Y, Zhou Q, Shung K (2016) Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy 22:414–421. https://doi.org/10.1016/j.nanoen.2016.02.045

    Article  CAS  Google Scholar 

  47. Gao X, Zhang H, Yue H, Yao F, Zhang X, GuoE MY, Wang Z, Wang Y (2020) A novel polyaniline nanowire arrays/three-dimensional graphene composite for supercapacitor. Chem Select 535:11004–11009. https://doi.org/10.1002/slct.202002801

    Article  CAS  Google Scholar 

  48. Oh JE, Kozlov M, Kim BG, Kim HK, Baughman R, Hwang YH (2008) Preparation and electrochemical characterization of porous SWNT–PPy nanocomposite sheets for supercapacitor applications. Synth. Met. 15815:638–641. https://doi.org/10.1016/j.synthmet.2008.04.007

    Article  CAS  Google Scholar 

  49. Feng M, Lu W, Zhou Y, Zhen R, Li C (2020) Synthesis of polypyrrole/nitrogen-doped porous carbon matrix composite as the electrode material for supercapacitors. Sci Rep 101:15370. https://doi.org/10.1038/s41598-020-72392-x

    Article  CAS  Google Scholar 

  50. Yue B, Wang C, Wagner P, Yang Y, Ding X, David L, Gordon G et al (2012) Electrodeposition of pyrrole and 3-(4-tert-butylphenyl) thiophene copolymer for supercapacitor applications. Synth Met 162:2216–2221. https://doi.org/10.1016/j.synthmet.2012.09.024

    Article  CAS  Google Scholar 

  51. Çakal D, Cihaner A, Önal AM (2018) Electrochemical and optical properties of dicyclohexylmethyl substituted poly(3,4-propylenedioxythiophene) analogue. J Appl Polym Sci 13518:46214. https://doi.org/10.1002/app.46214

    Article  CAS  Google Scholar 

  52. Patil BH, Patil SJ, Lokhande CD (2014) Electrochemical characterization of chemically synthesized polythiophene thin films: performance of asymmetric supercapacitor device. Electroanalysis 269:2023–2032. https://doi.org/10.1002/elan.201400284

    Article  CAS  Google Scholar 

  53. Wang H, Shen C, Liu J, Zhang W, Yao S (2019) Three-dimensional MnCo2O4/graphene composites for supercapacitor with promising electrochemical properties. J Alloys Comp 792:122–129. https://doi.org/10.1016/j.jallcom.2019.03.405

    Article  CAS  Google Scholar 

  54. Liu SD, Kang L, Hu JS, Euigeol J, Zhang J, Seong CJ, Yusuke Y (2021) Unlocking the potential of oxygen-deficient copper-doped Co3O4 nanocrystals confined in carbon as an advanced electrode for flexible solid-state supercapacitors. ACS Energy Lett 9:3011–3019. https://doi.org/10.1021/acsenergylett.1c01373

    Article  CAS  Google Scholar 

  55. Tian X, Jin J, Yuan S, Chua CK, Tor SB, Zhou K (2017) Emerging 3D-printed electrochemical energy storage devices: a critical review. Adv Energy Mater 717:1700127. https://doi.org/10.1002/aenm.201700127

    Article  CAS  Google Scholar 

  56. Sundriyal P, Bhattacharya S (2018) Inkjet-printed sensors on flexible substrates. Environ. Chem. Med. Sen. 89-113https://doi.org/10.1007/2F978-981-10-7751-7_5

  57. Zhu C, Liu T, Qian F, Chen W, Chandrasekaran S, Yao B, Song Y, Duoss E, Kuntz J, Spadaccini C, Worsley M, Li Y (2017) 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 15:107–120. https://doi.org/10.1016/j.nantod.2017.06.007

    Article  CAS  Google Scholar 

  58. Li X, Li H, Fan X, Shi X, Liang J (2020) 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv Energy Mater 1014:1903794. https://doi.org/10.1002/aenm.201903794

    Article  CAS  Google Scholar 

  59. Wang WJ, Zhang Y, Zhang LF, Shi YH, Jia LM, Zhang Q, Xu XH (2018) Flexible Mn3O4 nanosheet/reduced graphene oxide nanosheet paper-like electrodes for electrochemical energy storage and three-dimensional multilayers printing. Mater Lett 213:100–103. https://doi.org/10.1016/j.matlet.2017.11.025

    Article  CAS  Google Scholar 

  60. Tang K, Ma H, Tian YJ, Liu ZX, Tian XC (2020) 3D printed hybrid-dimensional electrodes for flexible micro-supercapacitors with superior electrochemical behaviours. Virtual Phys Proto 15:511–519. https://doi.org/10.1080/17452759.2020.1842619

    Article  Google Scholar 

  61. Wang L, Ji HM, Wang SS, Kong LJ, Jiang XF, Yang G (2013) Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale 5:3793–3799. https://doi.org/10.1039/C3NR00256J

    Article  CAS  PubMed  Google Scholar 

  62. Li GH, Li RC, Zhou WJ (2017) A wire-shaped supercapacitor in micrometer size based on Fe3O4 nanosheet arrays on Fe wire. Nano-Micro Lett 9:46. https://doi.org/10.1007/s40820-017-0147-3

    Article  CAS  Google Scholar 

  63. Shinde NM, Xia QX, Yun JM, Mane RS, Kim KH (2018) Polycrystalline and mesoporous 3-D Bi2O3 nanostructured negatrodes for high-energy and power-asymmetric supercapacitors: superfast room-temperature direct wet chemical growth. ACS Appl Mater Interfaces 10:11037–11047. https://doi.org/10.1021/acsami.8b00260

    Article  CAS  PubMed  Google Scholar 

  64. Qiu YF, Fan HB, Chang XY, Dang HF, Luo Q, Cheng ZY (2018) Novel ultrathin Bi2O3 nanowires for supercapacitor electrode materials with high performance. Appl Surf Sci 434:16–20. https://doi.org/10.1016/j.apsusc.2017.10.171

    Article  CAS  Google Scholar 

  65. Wu H, Guo JD, Yang DA (2020) Facile autoreduction synthesis of core-shell Bi-Bi2O3/CNT with 3-dimensional neural network structure for high-rate performance supercapacitor. J Mater Sci Technol 47:169–176. https://doi.org/10.1016/j.jmst.2020.02.007

    Article  Google Scholar 

  66. Yuan S, Huang XL, Ma DL, Wang HG, Meng FZ, Zhang XB (2014) Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv Mater 26:2273–2279. https://doi.org/10.1002/adma.201304469

    Article  CAS  PubMed  Google Scholar 

  67. Shinde SK, Dubal DP, Ghodake GS, Fulari VJ (2015) 3D-flower-like CuO nanostructure on copper foil for supercapacitors. RSC Adv 5:4443–4447. https://doi.org/10.1039/c4ra11164h

    Article  CAS  Google Scholar 

  68. Lamberti A, Francesco P, Matteo C, Mara S, Marco F, Stefano B, Sergio F, Elena T (2017) New insights on laser-induced graphene electrodes for flexible supercapacitors: tunable morphology and physical properties. Nanotechnology 28:174002. https://doi.org/10.1088/1361-6528/aa6615

    Article  CAS  PubMed  Google Scholar 

  69. Endut Z, Hamdi M, Basirun WJ (2013) Pseudocapacitive performance of vertical copper oxide nanoflakes. Thin Solid Films 528:213–216. https://doi.org/10.1016/j.tsf.2012.09.084

    Article  CAS  Google Scholar 

  70. Zhang TY, Li X, Asher E, Deng SX, Sun XL, Yang J (2018) Paper with power: engraving 2D materials on 3D structures for printed, high-performance, binder-free, and all-solid-state supercapacitors. Adv Funct Mater 28:1803600. https://doi.org/10.1002/adfm.201803600

    Article  CAS  Google Scholar 

  71. Yue HY, Zhang T, Guo XR, Gao X, Yao F, Chen HT, Lu XX, Wang YB (2020) Synthesis of Ni NW-assisted graphene/indium sulfide nanosheet arrays as electrode material for supercapacitor. Ionics 26:2043–2049. https://doi.org/10.1007/s11581-020-03469-w

    Article  CAS  Google Scholar 

  72. Xu TK, Wang ZX, Wang GX, Lu L, Liu S, Gao SP, Xu HF, Yu ZH (2019) One-pot synthesis of a CoS-AC electrode in a redox electrolyte for high-performance supercapacitors. J Appl Electrochem 49:1069–1077. https://doi.org/10.1007/s10800-019-01341-y

    Article  CAS  Google Scholar 

  73. Geng PB, Zheng SS, Tang H, Zhu RM, Zhang L, Cao S, Xue HG, Pang H (2018) Transition metal sulfides based on graphene for electrochemical energy storage. Adv Energy Mater 8:1. https://doi.org/10.1002/aenm.201703259

    Article  CAS  Google Scholar 

  74. Gao RS, Zhang QG, Soyekwo F, Lin CX, Lv RX, Qu Y, Chen MM, Zhu AM, Liu QL (2017) Novel amorphous nickel sulfide @ CoS double-shelled polyhedral nanocages for supercapacitor electrode materials with superior electrochemical properties. Electrochim Acta 237:94–101. https://doi.org/10.1016/j.electacta.2017.03.214

    Article  CAS  Google Scholar 

  75. Rakhi RB, Anjum DH, Alshareef HN, Alshareef HN (2014) Nanostructured cobalt sulfide-on-fiber with tunable morphology as electrodes for asymmetric hybrid supercapacitors. J Mater Chem A 2:16190–16198. https://doi.org/10.1039/c4ta03341h

    Article  CAS  Google Scholar 

  76. Kulkarni P, Nataraj SK, Reddy MV, Balakrishna RG, Nagaraju DH (2017) Nanostructured binary and ternary metal sulfides: synthesis methods and their application in energy conversion and storage devices. J Mater Chem A 5:22040–22094. https://doi.org/10.1039/c7ta07329a

    Article  CAS  Google Scholar 

  77. Kang L, Zhang MY, Zhang J, Liu SD, Zhang N, Yao WJ, Ye Y, Luo C, Gong ZW, Wang CL, Zhou XF, Wu X, Secong CJ (2020) Dual-defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors. J Mater Chem A 8:24053–24064. https://doi.org/10.1039/D0TA08979F

    Article  CAS  Google Scholar 

  78. Liu FS, Chen CN (2019) MOF-derived transition metal sulfides for high performance supercapacitor. Anhui Chem Ind 45(45–47):50. https://doi.org/10.3969/j.issn.1008-553X.2019.04.014

    Article  CAS  Google Scholar 

  79. Wang H, Zhang N, Li SM, Ke QF, Li ZQ, Zhou M (2020) Metal-organic framework composites for energy conversion and storage. J Semicond 41(9):091707. https://doi.org/10.1088/1674-4926/41/9/091707

    Article  CAS  Google Scholar 

  80. Liu SD, Kang L, Zhang J, Euigeol J, Lee SC, Seong CJ (2020) Structural engineering and surface modification of MOF-derived cobalt-based hybrid nanosheets for flexible solid-state supercapacitors. Energy Stor Mater 32:167–177. https://doi.org/10.1016/j.ensm.2020.07.017

    Article  Google Scholar 

  81. Wu JF, Zhang QE, Wang JJ, Huang XP, Bai H (2018) A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors. Energ Environ Sci 11:1280–1286. https://doi.org/10.1039/C8EE00078F

    Article  CAS  Google Scholar 

  82. Feng LX, Wang K, Zhang X, Sun XZ, Li C, Ge XB, Ma YW (2018) Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv Funct Mater 28:1704463. https://doi.org/10.1002/adfm.201704463

    Article  CAS  Google Scholar 

  83. Wang QS, Zhang YF, Jiang HM, Li XJ, Yan C, Meng CG (2019) Designed mesoporous hollow sphere architecture metal (Mn Co, Ni) silicate: a potential electrode material for flexible all solid-state asymmetric supercapacitor. Chem Eng J 362:818–829. https://doi.org/10.1016/j.cej.2019.01.102

    Article  CAS  Google Scholar 

  84. Yuan SJ, Fan W, Jin YN, Wang D, Liu TX (2020) Free-standing flexible graphene-based aerogel film with high energy density as an electrode for supercapacitors. Nano Mater Sci 3:68–74. https://doi.org/10.1016/j.nanoms.2020.03.003

    Article  CAS  Google Scholar 

  85. Zang XB, Zhu M, Li X, Li XM, Zhen Z, Lao JC, Wang KL, Kang FY, Wei BQ, Zhu HW (2015) Dynamically stretchable supercapacitors based on graphene woven fabric electrodes. Nano Energy 15:83–91. https://doi.org/10.1016/j.nanoen.2015.04.010

    Article  CAS  Google Scholar 

  86. Ma XH, Jiang ZF, Lin YJ (2021) Flexible energy storage devices for wearable bioelectronics. J Semicond 42:101602. https://doi.org/10.1088/1674-4926/42/10/101602

    Article  CAS  Google Scholar 

  87. Dong K, Wang DL (2021) Self-charging power textiles integrating energy harvesting triboelectric nanogenerators with energy storage batteries/supercapacitors. J Semicond 42:101601. https://doi.org/10.1088/1674-4926/42/10/101601

    Article  CAS  Google Scholar 

  88. Lu XF, Zhao TK, Ji XL, Hu JT, Li TB, Lin X, Huang WD (2018) 3D printing well organized porous iron-nickel/polyaniline nanocages multiscale supercapacitor. J Alloy Comp 760:78–83. https://doi.org/10.1016/j.jallcom.2018.05.165

    Article  CAS  Google Scholar 

  89. Li SM, Jiang H, Li S, Yang K, Zhang Z, Li SJ, Luo N, Liu QH, Wei R (2018) Three dimensional hierarchical graphene/TiO2 composite as high-performance electrode for supercapacitor. J Alloy Comp 746:670–676. https://doi.org/10.1016/j.jallcom.2018.02.210

    Article  CAS  Google Scholar 

  90. Chen XL, Zhu ZP, Wu BX, Chen SG, Zhou P, He H (2021) Design and synthesis of sandwich-like Co9S8/NiTe/Ni composites for high-performance supercapacitors. Chin. J Inorg Chem 37:295–304. https://doi.org/10.11862/CJIC.2021.031

    Article  CAS  Google Scholar 

  91. Wang N, Yan SJ, Peng SK, Chen X, Dai SL (2017) Research progress on 3D printed graphene materials synthesis technology and its application in energy storage field. J Mater Eng Perform 45:112–125. https://doi.org/10.11868/j.issn.1001-4381.2016.001102

    Article  Google Scholar 

  92. Shen CW, Wang XH, Zhang WF, Kang FY (2011) A high-performance three-dimensional micro supercapacitor based on self-supporting composite materials. J Power Sources 196:10465–10471. https://doi.org/10.1016/j.jpowsour.2011.08.007

    Article  CAS  Google Scholar 

  93. Sumboja A, Lübke M, Wang Y, An T, Zong Y, Liu ZL (2017) All-solid-state, foldable, and rechargeable Zn-air batteries based on manganese oxide grown on graphene-coated carbon cloth air cathode. Adv Energy Mater 7:1700927. https://doi.org/10.1002/aenm.201700927

    Article  CAS  Google Scholar 

  94. Tian XC, Jin J, Yuan SQ, Chua C, Tor S, Zhou K (2017) Emerging 3D-printed electrochemical energy storage devices: a critical review. Adv Energy Mater 7:1700127. https://doi.org/10.1002/aenm.201700127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the College Students’ Innovative Entrepreneurial Training Plan Program (202110010073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junying Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, J., Gao, X. et al. Advances in materials and structures of supercapacitors. Ionics 28, 515–531 (2022). https://doi.org/10.1007/s11581-021-04359-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04359-5

Keywords

Navigation