Skip to main content
Log in

The use of activated carbon from coffee endocarp for the manufacture of supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Activated carbon (AC) was obtained from the dry endocarp of coffee for the manufacture of electrodes for supercapacitors. Four different AC samples were prepared via chemical methods at different proportions of impregnation (Xp) and two temperatures of activation (600 and 700 °C). Scanning Electron Microscopy technology and the measurement of the adsorption of N2 via the Brunauer–Emmett–Teller (BET) method were used to identify the morphological characteristics of AC, revealing high surface areas. Energy dispersive X-ray spectroscopy and Fourier-transform infrared spectroscopy techniques were applied for chemical composition analysis, identifying oxygenated functional groups which contribute to the increase in capacitance. The supercapacitor comprised two electrodes mounted on a tantalum cell, which was electrochemically evaluated by means of cyclic voltammetry and galvanostatic chronopotentiometry charge/discharge measurements. The maximum specific capacitance encountered was 186 Fg−1, which was obtained from the AC sample with a surface area of 734 m2g−1 and prepared at an Xp of 150% and an activation temperature of 700 °C. All AC samples exhibited good electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Sustain. Energy Rev. 58, 1189 (2016)

    Google Scholar 

  2. Y. Huang, J. He, Y. Luan, Y. Jiang, S. Guo, X. Zhang, C. Tian, B. Jiang, RSC Adv. 7, 10385 (2017)

    CAS  Google Scholar 

  3. J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedlaříková, J. Energy Storage 17, 227 (2018)

    Google Scholar 

  4. G. Sethia, A. Sayari, Carbon 99, 289 (2016)

    CAS  Google Scholar 

  5. E. Elaiyappillai, R. Srinivasan, Y. Johnbosco, P. Devakumar, K. Murugesan, K. Kesavan, P.J. Merlin, Appl. Surf. Sci. 486, 527 (2019)

    CAS  Google Scholar 

  6. Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev. 45, 5925 (2016)

    CAS  Google Scholar 

  7. M. Inagaki, H. Konno, O. Tanaike, J. Power Sour. 195, 7880 (2010)

    CAS  Google Scholar 

  8. J.R. Miller, P. Simon, Science 321, 651 (2008)

    CAS  Google Scholar 

  9. E. Ismanto, S. Wang, F.E. Soetaredjo, S. Ismadji, Bioresour. Technol. 101, 3534 (2010)

    CAS  Google Scholar 

  10. W. Li, Y. Ding, W. Zhang, Y. Shu, L. Zhang, F. Yang, Y. Shen, J. Taiwan Inst. Chem. Eng. 64, 166 (2016)

    CAS  Google Scholar 

  11. F. Moshood Abioye, Nasir Ani. Renew. Sustain. Energy Rev. 52, 1282 (2015)

    Google Scholar 

  12. Y. Luan, Y. Huang, L. Wang, M. Li, R. Wang, B. Jiang, J. Electroanal. Chem. 763, 90 (2016)

    CAS  Google Scholar 

  13. M. Loredo-Cancino, E. Soto-Regalado, F. Cerino-Córdova, R. García-Reyes, A. García-León, M. Garza-González, J. Environ. Manag. 125, 117 (2013)

    CAS  Google Scholar 

  14. P. González-García, T. Centeno, E. Urones-Garrote, D. Ávila-Brande, L. Otero-Díaz, Appl. Surf. Sci. 265, 731 (2013)

    Google Scholar 

  15. L.Y. Lin, Electrochim. Acta 250, 335 (2017)

    CAS  Google Scholar 

  16. S. Mondal, K. Aikat, G. Halder, Ecol. Eng. 92, 158 (2016)

    Google Scholar 

  17. D. Tang, Y. Luo, W. Lei, Q. Xiang, W. Ren, W. Song, K. Chen, J. Sun, Appl. Surf. Sci. 462, 862 (2018)

    CAS  Google Scholar 

  18. A. Labrada-Vázquez, A.E. Sánchez del Campo-Lafita, TecHnol. Quím. XXXI, 5 (2011)

    Google Scholar 

  19. U. Kumar, V. Gaikwad, M. Mayyas, V. Sahajwalla, R.K. Joshi, J. Power Sour. 394, 140 (2018)

    CAS  Google Scholar 

  20. T. Adinaveen, L.J. Kennedy, J.J. Vijaya, J. Mater. Cycles Waste Manag. 17, 736 (2014)

    Google Scholar 

  21. Y.S. Yun, M.H. Park, J.S. Hong, M.E. Lee, Y.W. Park, H.J. Jin, Appl. Mater. Interfaces 7, 3684 (2015)

    CAS  Google Scholar 

  22. S. Yakout, G.E.-D. Sharaf, Arab. J. Chem. 9, S1155 (2016)

    CAS  Google Scholar 

  23. X. He, P. Ling, J. Qiu, M. Yu, X. Zhang, C. Yu, M. Zheng, J. Power Sour. 240, 109 (2013)

    CAS  Google Scholar 

  24. J. Chang, Z. Gao, X. Wang, D. Wu, F. Xu, X. Wang, Y. Guo, K. Jiang, Electrochim. Acta 157, 290 (2015)

    CAS  Google Scholar 

  25. X. Zhu, S. Yu, Y. Zhang, Y. Zhang, L. Zhang, G. Lou, Y. Wu, E. Zhu, H. Chen, Z. Shen, B. Bao, S. Fu, Chem. Eng. Sci. 181, 36 (2018)

    CAS  Google Scholar 

  26. S. Zhang, N. Pan, Adv. Energy Mater. 4, 1 (2014)

    Google Scholar 

  27. Y. Guo, D.A. Rockstraw, Bioresour. Technol. 98, 1513 (2007)

    CAS  Google Scholar 

  28. Y.H. Chiu, L.Y. Lin, J. Taiwan Inst. Chem. Eng. 101, 177 (2019)

    CAS  Google Scholar 

  29. E.Y. Lih Teo, L. Muniandy, E.-P. Ng, A. Rahman, A.R. Mohamed, R. Jose, K. Feng Chong, Electochim. Acta 192, 110 (2016)

    Google Scholar 

  30. L. Jiang, S. Hu, L. Sun, S. Su, K. Xu, L.-M. He, J. Xiang, Bioresour. Technol. 146, 254 (2013)

    CAS  Google Scholar 

  31. Y. Cao, K. Wang, X. Wang, Z. Gu, Q. Fan, W. Gibbons, J.D. Hoefelmeyer, P. Ram Kharel, M. Shrestha, Electrochim. Acta 212, 839 (2016)

    CAS  Google Scholar 

  32. B. Fuertes, G. Lota, T.A. Centeno, E. Frackowiak, Electrochim. Acta 50, 2799 (2005)

    CAS  Google Scholar 

  33. S. Faraji, F.N. Ani, Renew. Sustain. Energy Rev. 42, 823 (2015)

    CAS  Google Scholar 

  34. S. Joseph, D.M. Kempaiah, M.R. Benzigar, H. Ilbeygi, G. Singh, S.N. Talapaneni, D.-H. Park, A. Vinu, Microporous Mesoporous Mater. 280, 337 (2019)

    CAS  Google Scholar 

  35. L. Chang, D.J. Stacchiola, Y.H. Hu, A.C.S. Appl, Mater. Insterfaces 9, 24655 (2017)

    CAS  Google Scholar 

  36. D. Zhao, H. Liu, X. Wu, Nano Energy 57, 363 (2019)

    CAS  Google Scholar 

  37. K. Wang, N. Zhao, S. Lei, R. Yan, X. Tian, J. Wang, Y. Song, D. Xu, Q. Guo, L. Liu, Electrochim. Acta 166, 1 (2015)

    CAS  Google Scholar 

  38. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)

    CAS  Google Scholar 

  39. Y. Zhao, J. He, M. Dai, D. Zhao, X. Wu, B. Liu, J. Energy Chem. 45, 67 (2020)

    Google Scholar 

  40. E. Frakowiak, F. Béguin, Carbon 39, 937 (2001)

    Google Scholar 

  41. M. Puziy, O.I. Poddubnaya, A. Martínez-Alonso, F. Suárez-García, J.D. Tascón, Carbon 40, 1493 (2002)

    CAS  Google Scholar 

  42. K. Karthikeyan, S. Amaresh, S.N. Lee, X. Sun, V. Aravindan, Y.G. Lee, Y.S. Lee, Chemsuschem 7, 1 (2014)

    Google Scholar 

  43. F.C. Wu, R.L. Tseng, C.C. Hu, C.C. Wang, J. Power Sour. 144, 302 (2005)

    CAS  Google Scholar 

  44. C. Huang, T. Sun, D. Hulicova-Jurcakova, Chemsuschem 6, 2330 (2013)

    CAS  Google Scholar 

  45. L. Jiang, J. Yan, L. Hao, R. Xue, G. Sun, B. Yi, Carbon 56, 146 (2013)

    CAS  Google Scholar 

  46. Z. Liu, J. Dai, Y. Yan, Chem. Sel. 3, 5726 (2018)

    CAS  Google Scholar 

  47. D.C. Martínez-Casillas, I. Mascorro-Gutiérrez, C. Arreola-Ramos, H. Villafán-Vidales, C. Arancibia-Bulnes, V. Ramos-Sánchez, A. Cuentas-Gallegos, Carbon 148, 403 (2019)

    Google Scholar 

Download references

Acknowledgements

The author thanks the Universidad Politécnica de Chiapas and the Universidad Juárez Autónoma de Tabasco for the laboratory facilities provided for the development of this research, and M. C. Edith Ponce Recinos and M. C. Anabel González Díaz for providing DRX and EDS-SEM measurements, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Castillo-Palomera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Ángel-Meraz, E., de Jesús Orantes-Flores, H., Morales, E.R. et al. The use of activated carbon from coffee endocarp for the manufacture of supercapacitors. J Mater Sci: Mater Electron 31, 7547–7554 (2020). https://doi.org/10.1007/s10854-020-03123-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03123-1

Navigation