Skip to main content
Log in

Effect of pyrolytic polyacrylonitrile on electrochemical performance of Si/graphite composite anode for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The silicon/graphite (Si/G) composite was prepared using pyrolytic polyacrylonitrile (PAN) as carbon precursor, which is a nitrogen-doped carbon that provides efficient pathway for electron transfer. The combination of flake graphite and pyrolytic carbon layer accommodates the large volume expansion of Si during discharge-charge process. The Si/G composite was synthesized via cost-effective liquid solidification followed by carbonization process. The effect of PAN content on electrochemical performance of composites was investigated. The composite containing 40 wt% PAN exhibits a relatively better rate capability and cycle performance than others. It exhibits initial reversible specific capacity of 793.6 mAh g−1 at a current density of 100 mA g−1. High capacity of 661 mAh g−1 can be reached after 50 cycles at current density of 500 mA g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24

    Article  CAS  Google Scholar 

  2. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  3. Wang J, Li X, Wang Z, Huang B, Wang Z, Guo H (2014) Nanosized LiVPO4F/graphene composite: a promising anode material for lithium ion batteries. J Power Sources 251:325–330

    Article  CAS  Google Scholar 

  4. Yang Z, Guo H, Li X, Wang Z, Yan Z, Wang Y (2016) Natural sisal fibers derived hierarchical porous activated carbon as capacitive material in lithium ion capacitor. J Power Sources 329:339–346

    Article  CAS  Google Scholar 

  5. Liu Y, Gao Y, Wang Q, Dou A (2014) Improvement electrochemical performance of Li1.5Ni0.25Mn0.75O2.5 with Li4Ti5O12 coating. Ionics 20:739–745

    Article  CAS  Google Scholar 

  6. Terranova ML, Orlanducci S, Tamburri E, Guglielmotti V, Rossi M (2014) Si/C hybrid nanostructures for Li-ion anodes: an overview. J Power Sources 246:167–177

    Article  CAS  Google Scholar 

  7. Kim H, Lee E-J, Sun Y-K (2014) Recent advances in the Si-based nanocomposite materials as high capacity anode materials for lithium ion batteries. Mater Today 17:285–297

    Article  CAS  Google Scholar 

  8. Junke Ou YZ, Chen L, Guo Y, Xiao D (2015) Hierarchical porous carbons fabricated from silica via flame synthesis as anode materials for high-performance lithium-ion batteries. Ionics 21:1881–1891

    Article  Google Scholar 

  9. Li B, Yang S, Li S, Wang B, Liu J (2015) From commercial sponge toward 3D graphene-silicon networks for superior lithium storage. Adv Energy Mater 5:1–7

    Google Scholar 

  10. Bie Y, Yu J, Yang J, Lu W, Nuli Y, Wang J (2015) Porous microspherical silicon composite anode material for lithium ion battery. Electrochim Acta 178:65–73

    Article  CAS  Google Scholar 

  11. Kong J, Yee WA, Wei Y, Yang L, Ang JM, Phua SL, Wong SY, Zhou R, Dong Y, Li X, Lu X (2013) Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes. Nanoscale 5:2967–2973

    Article  CAS  Google Scholar 

  12. Song T, Xia J, Lee JH, Lee DH, Kwon MS, Choi JM, Wu J, Doo SK, Chang H, Park WI, Zang DS, Kim H, Huang Y, Hwang KC, Rogers JA, Paik U (2010) Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett 10:1710–1716

    Article  CAS  Google Scholar 

  13. Nishikawa K, Moon J, Kanamura K (2016) In-situ observation of volume expansion behavior of a silicon particle in various electrolytes. J Power Sources 302:46–52

    Article  CAS  Google Scholar 

  14. Li S, Qin X, Zhang H, Wu J, He Y-B, Li B, Kang F (2014) Silicon/carbon composite microspheres with hierarchical core–shell structure as anode for lithium ion batteries. Electrochem Commun 49:98–102

    Article  Google Scholar 

  15. Yun Q, Qin X, Lv W, He Y-B, Li B, Kang F, Yang Q-H (2015) “Concrete” inspired construction of a silicon/carbon hybrid electrode for high performance lithium ion battery. Carbon 93:59–67

    Article  CAS  Google Scholar 

  16. Tang H, Zhang YJ, Xiong QQ, Cheng JD, Zhang Q, Wang XL, Gu CD, Tu JP (2015) Self-assembly silicon/porous reduced graphene oxide composite film as a binder-free and flexible anode for lithium-ion batteries. Electrochim Acta 156:86–93

    Article  CAS  Google Scholar 

  17. Yu B-C, Hwa Y, Kim J-H, Sohn H-J (2014) Carbon coating for Si nanomaterials as high-capacity lithium battery electrodes. Electrochem Commun 46:144–147

    Article  CAS  Google Scholar 

  18. Zhou Y, Guo H, Yang Y, Wang Z, Li X, Zhou R, Peng W (2016) Facile synthesis of silicon/carbon nanospheres composite anode materials for lithium-ion batteries. Mater Lett 168:138–142

    Article  CAS  Google Scholar 

  19. Li M, Hou X, Sha Y, Wang J, Hu S, Liu X, Shao Z (2014) Facile spray-drying/pyrolysis synthesis of core–shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries. J Power Sources 248:721–728

    Article  CAS  Google Scholar 

  20. Jeong S, Li X, Zheng J, Yan P, Cao R, Jung HJ, Wang C, Liu J, Zhang J-G (2016) Hard carbon coated nano-Si/graphite composite as a high performance anode for Li-ion batteries. J Power Sources 329:323–329

    Article  CAS  Google Scholar 

  21. Zhou R, Fan R, Tian Z, Zhou Y, Guo H, Kou L, Zhang D (2016) Preparation and characterization of core–shell structure Si/C composite with multiple carbon phases as anode materials for lithium ion batteries. J Alloys Compd 658:91–97

    Article  CAS  Google Scholar 

  22. Yin L, Wang J, Lin F, Yang J, Nuli Y (2012) Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li-S batteries. Energy Environ Sci 5:6966–6972

    Article  CAS  Google Scholar 

  23. Luo L, Xu Y, Zhang H, Han X, Dong H, Xu X, Chen C, Zhang Y, Lin J (2016) Comprehensive understanding of high polar polyacrylonitrile as an effective binder for Li-ion battery nano-Si anodes. ACS Appl Mater Interfaces 8:8154–8161

    Article  CAS  Google Scholar 

  24. Thakur M, Pernites RB, Nitta N, Isaacson M, Sinsabaugh SL, Wong MS, Biswal SL (2012) Freestanding macroporous silicon and pyrolyzed polyacrylonitrile as a composite anode for lithium ion batteries. Chem Mater 24:2998–3003

    Article  CAS  Google Scholar 

  25. Xiong C, Li Y, Wang G, Fang L, Zhou S, Yao C, Chen Q, Zheng X, Qi D, Fu Y, Zhu Y (2015) Selective removal of Hg(II) with polyacrylonitrile-2-amino-1,3,4-thiadiazole chelating resin: batch and column study. Chem Eng J 259:257–265

    Article  CAS  Google Scholar 

  26. Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 43:153–161

    Article  CAS  Google Scholar 

  27. Zhou R, Guo H, Yang Y, Wang Z, Li X, Zhou Y (2016) An alternative carbon source of silicon-based anode material for lithium ion batteries. Powder Technol 295:296–302

    Article  CAS  Google Scholar 

  28. Wang Z, Qie L, Yuan L, Zhang W, Hu X, Huang Y (2013) Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55:328–334

    Article  CAS  Google Scholar 

  29. Li C-C, Lee J-T, Peng X-W (2006) Improvements of dispersion homogeneity and cell performance of aqueous-processed LiCoO2 cathodes by using dispersant of PAA–NH4. J Electrochem Soc 153:A809

    Article  CAS  Google Scholar 

  30. Zhou R, Guo H, Yang Y, Wang Z, Li X, Zhou Y (2016) N-doped carbon layer derived from polydopamine to improve the electrochemical performance of spray-dried Si/graphite composite anode material for lithium ion batteries. J Alloys Compd 689:130–137

    Article  CAS  Google Scholar 

  31. Ye J, He F, Nie J, Cao Y, Yang H, Ai X (2015) Sulfur/carbon nanocomposite-filled polyacrylonitrile nanofibers as a long life and high capacity cathode for lithium–sulfur batteries. J Mater Chem A 3:7406–7412

    Article  CAS  Google Scholar 

  32. Xiao W, Miao C, Yan X, Mei P (2015) Novel silicon–oxygen–carbon composite with excellent cycling steady performance as anode for lithium-ion batteries. Ionics 21:2149–2153

    Article  CAS  Google Scholar 

  33. Tao H-C, Yang X-L, Zhang L-L, Ni S-B (2014) Reduced graphene oxide/porous Si composite as anode for high-performance lithium ion batteries. Ionics 21:617–622

    Article  Google Scholar 

  34. Wang M-S, Fan L-Z (2013) Silicon/carbon nanocomposite pyrolyzed from phenolic resin as anode materials for lithium-ion batteries. J Power Sources 244:570–574

    Article  CAS  Google Scholar 

  35. Wang J, Wang C, Zhu Y, Wu N, Tian W (2014) Electrochemical stability of optimized Si/C composites anode for lithium-ion batteries. Ionics 21:579–585

    Article  CAS  Google Scholar 

  36. Yue H, Wang S, Yang Z, Li Q, Lin S, He D (2015) Ultra-thick porous films of graphene-encapsulated silicon nanoparticles as flexible anodes for lithium ion batteries. Electrochim Acta 174:688–695

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful for the financial support from the National Natural Science Foundation of China (No. 51404038, 51472034), the Educational Commission of Hubei Province Foundation of China (No. B2016040), and the Yangtze Youth Talents Fund (No. 2015cqr14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingmei Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Xiao, W., Yan, X. et al. Effect of pyrolytic polyacrylonitrile on electrochemical performance of Si/graphite composite anode for lithium-ion batteries. Ionics 23, 1685–1692 (2017). https://doi.org/10.1007/s11581-017-1992-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-1992-2

Keywords

Navigation