Skip to main content
Log in

Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In quantum information processing, the quality of photon system is decreased by the inevitable interaction with environment, which will greatly reduce the efficiency and security of quantum information processing. In this paper, we propose hyperentanglement-assisted hyperdistillation schemes to guarantee the quality of hyper-encoding photon system based on the method of quantum hyper-teleportation, which can increase the success probability of hyperdistillation and reduce the resource consumption. First, we propose a hyperentanglement-assisted single-photon hyperdistillation (HASPHD) scheme for polarization and spatial qubits to get rid of the vacuum state component caused by transmission loss, whose success probability can achieve the optimal one by increasing the efficiency of quantum hyper-teleportation. Subsequently, we present two hyperentanglement-assisted hyperentanglement distillation (HAHED) schemes for photon system to protect hyperentanglement from both transmission loss and quantum channel noise, which can recover the less-entangled mixed state to maximally hyperentangled state for known-parameter and unknown-parameter cases with high success probability and low resource consumption. In these hyperdistillation schemes, the influence of imperfect effects of optical elements can be largely decreased by the quantum hyper-teleportation method. These characters make the hyperentanglement-assisted hyperdistillation schemes have potential application prospects in practical quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  MATH  Google Scholar 

  2. X. M. Hu, Y. Guo, B. H. Liu, Y. F. Huang, C. F. Li, and G. C. Guo, Beating the channel capacity limit for superdense coding with entangled ququarts, Sci. Adv. 4(7), eaat9304 (2018)

    Article  ADS  Google Scholar 

  3. A. K. Ekert, Quantum cryptography based on bells theorem, Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MATH  Google Scholar 

  4. D. Bruß and C. Macchiavello, Optimal eavesdropping in cryptography with three-dimensional quantum states, Phys. Rev. Lett. 88(12), 127901 (2002)

    Article  ADS  Google Scholar 

  5. Y. F. Yan, L. Zhou, W. Zhong, and Y. B. Sheng, Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon, Front. Phys. 16(1), 11501 (2021)

    Article  ADS  Google Scholar 

  6. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Security of quantum key distribution using d-level systems, Phys. Rev. Lett. 88(12), 127902 (2002)

    Article  ADS  Google Scholar 

  7. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MATH  Google Scholar 

  8. C. H. Bennett and S. J. Wiesner, Communication via oneand two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69(20), 2881 (1992)

    Article  ADS  MATH  Google Scholar 

  9. X. Liu, G. Long, D. Tong, and F. Li, General scheme for superdense coding between multiparties, Phys. Rev. A 65(2), 022304 (2002)

    Article  ADS  Google Scholar 

  10. M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MATH  Google Scholar 

  11. L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, Efficient multiparty quantum-secret-sharing schemes, Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  12. G. L. Long and X. S. Liu, Theoretically efficient high capacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  13. F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  14. W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118(22), 220501 (2017)

    Article  ADS  Google Scholar 

  15. Z. Zhou, Y. Sheng, P. Niu, L. Yin, G. Long, and L. Hanzo, Measurement-device-independent quantum secure direct communication, Sci. China Phys. Mech. Astron. 63(3), 230362 (2020)

    Article  ADS  Google Scholar 

  16. Z. D. Ye, D. Pan, Z. Sun, C. G. Du, L. G. Yin, and G. L. Long, Generic security analysis framework for quantum secure direct communication, Front. Phys. 16(2), 21503 (2021)

    Article  ADS  Google Scholar 

  17. S. S. Chen, L. Zhou, W. Zhong, and Y. B. Sheng, Three-step three-party quantum secure direct communication, Sci. China Phys. Mech. Astron. 61(9), 90312 (2018)

    Article  ADS  Google Scholar 

  18. G. L. Long and H. Zhang, Drastic increase of channel capacity in quantum secure direct communication using masking, Sci. Bull. (Beijing) 66(13), 1267 (2021)

    Article  ADS  Google Scholar 

  19. A. Yabushita and T. Kobayashi, Spectroscopy by frequency-entangled photon pairs, Phys. Rev. A 69(1), 013806 (2004)

    Article  ADS  Google Scholar 

  20. C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, Complete deterministic linear optics bell state analysis, Phys. Rev. Lett. 96(19), 190501 (2006)

    Article  ADS  Google Scholar 

  21. M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, Complete and deterministic discrimination of polarization bell states assisted by momentum entanglement, Phys. Rev. A 75(4), 042317 (2007)

    Article  ADS  Google Scholar 

  22. G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, Hyperentanglement of two photons in three degrees of freedom, Phys. Rev. A 79(3), 030301 (2009)

    Article  ADS  MATH  Google Scholar 

  23. M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, Polarization-momentum hyperentangled states: Realization and characterization, Phys. Rev. A 72(5), 052110 (2005)

    Article  ADS  Google Scholar 

  24. J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, Generation of hyperentangled photon pairs, Phys. Rev. Lett. 95(26), 260501 (2005)

    Article  ADS  Google Scholar 

  25. J. T. Barreiro, T. C. Wei, and P. G. Kwiat, Beating the channel capacity limit for linear photonic superdense coding, Nat. Phys. 4(4), 282 (2008)

    Article  Google Scholar 

  26. T. C. Ralph and A. Lund, Nondeterministic noiseless linear amplification of quantum systems, in: AIP Conference Proceedings, 1110(1), 155 (2009)

  27. N. Gisin, S. Pironio, and N. Sangouard, Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier, Phys. Rev. Lett. 105(7), 070501 (2010)

    Article  ADS  Google Scholar 

  28. D. Pitkanen, X. Ma, R. Wickert, P. van Loock, and N. Lütkenhaus, Efficient heralding of photonic qubits with applications to device-independent quantum key distribution, Phys. Rev. A 84(2), 022325 (2011)

    Article  ADS  Google Scholar 

  29. C. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. Thew, Heralded photon amplification for quantum communication, Phys. Rev. A 86(2), 023815 (2012)

    Article  ADS  Google Scholar 

  30. S. Kocsis, G. Y. Xiang, T. C. Ralph, and G. J. Pryde, Heralded noiseless amplification of a photon polarization qubit, Nat. Phys. 9(1), 23 (2013)

    Article  Google Scholar 

  31. M. Curty and T. Moroder, Heralded-qubit amplifiers for practical device-independent quantum key distribution, Phys. Rev. A 84(1), 010304 (2011)

    Article  ADS  Google Scholar 

  32. L. Zhou, Y. B. Sheng, and G. L. Long, Device-independent quantum secure direct communication against collective attacks, Sci. Bull. (Beijing) 65(1), 12 (2020)

    Article  ADS  Google Scholar 

  33. S. Zhang, S. Yang, X. Zou, B. Shi, and G. Guo, Protecting single-photon entangled state from photon loss with noiseless linear amplification, Phys. Rev. A 86(3), 034302 (2012)

    Article  ADS  Google Scholar 

  34. G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk, and G. J. Pryde, Heralded noiseless linear amplification and distillation of entanglement, Nat. Photonics 4(5), 316 (2010)

    Article  Google Scholar 

  35. L. Zhou and Y. B. Sheng, Recyclable amplification protocol for the single-photon entangled state, Laser Phys. Lett. 12(4), 045203 (2015)

    Article  ADS  Google Scholar 

  36. F. Monteiro, E. Verbanis, V. C. Vivoli, A. Martin, N. Gisin, H. Zbinden, and R. Thew, Heralded amplification of path entangled quantum states, Quantum Sci. Technol. 2(2), 024008 (2017)

    Article  ADS  Google Scholar 

  37. T. J. Wang, C. Cao, and C. Wang, Linear-optical implementation of hyperdistillation from photon loss, Phys. Rev. A 89(5), 052303 (2014)

    Article  ADS  Google Scholar 

  38. G. Yang, Y. S. Zhang, Z. R. Yang, L. Zhou, and Y. B. Sheng, Linear-optical heralded amplification protocol for two-photon spatial-mode-polarization hyperentangled state, Quantum Inform. Process. 18(10), 317 (2019)

    Article  ADS  MATH  Google Scholar 

  39. D. Y. Chen, Z. Lin, M. Yang, Q. Yang, X. P. Zang, and Z. L. Cao, Distillation of lossy hyperentangled states, Phys. Rev. A 102(2), 022425 (2020)

    Article  ADS  Google Scholar 

  40. Y. Y. Jin, S. X. Qin, H. Zu, L. Zhou, W. Zhong, and Y. B. Sheng, Heralded amplification of single-photon entanglement with polarization feature, Front. Phys. 13(5), 130321 (2018)

    Article  Google Scholar 

  41. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Mixed-state entanglement and quantum error correction, Phys. Rev. A 54(5), 3824 (1996)

    Article  ADS  MATH  Google Scholar 

  42. J. W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, Entanglement purification for quantum communication, Nature 410(6832), 1067 (2001)

    Article  ADS  Google Scholar 

  43. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity, Phys. Rev. A 77(4), 042308 (2008)

    Article  ADS  Google Scholar 

  44. Y. B. Sheng and F. G. Deng, One-step deterministic polarization-entanglement purification using spatial entanglement, Phys. Rev. A 82(4), 044305 (2010)

    Article  ADS  Google Scholar 

  45. C. Wang, Y. Zhang, and G. S. Jin, Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities, Phys. Rev. A 84(3), 032307 (2011)

    Article  ADS  Google Scholar 

  46. B. C. Ren, F. F. Du, and F. G. Deng, Two-step hyperentanglement purification with the quantum-state-joining method, Phys. Rev. A 90(5), 052309 (2014)

    Article  ADS  Google Scholar 

  47. M. Zwerger, H. Briegel, and W. Dür, Robustness of hashing protocols for entanglement purification, Phys. Rev. A 90(1), 012314 (2014)

    Article  ADS  Google Scholar 

  48. G. Y. Wang, T. Li, Q. Ai, A. Alsaedi, T. Hayat, and F. G. Deng, Faithful entanglement purification for high-capacity quantum communication with two-photon four-qubit systems, Phys. Rev. Appl. 10(5), 054058 (2018)

    Article  ADS  Google Scholar 

  49. L. Zhou, W. Zhong, and Y. B. Sheng, Purification of the residual entanglement, Opt. Express 28(2), 2291 (2020)

    Article  ADS  Google Scholar 

  50. P. S. Yan, L. Zhou, W. Zhong, and Y. B. Sheng, Feasible measurement-based entanglement purification in linear optics, Opt. Express 29(6), 9363 (2021)

    Article  ADS  Google Scholar 

  51. T. J. Wang, S. C. Mi, and C. Wang, Hyperentanglement purification using imperfect spatial entanglement, Opt. Express 25(3), 2969 (2017)

    Article  ADS  Google Scholar 

  52. P. S. Yan, L. Zhou, W. Zhong, and Y. B. Sheng, Measurement-based entanglement purification for entangled coherent states, Front. Phys. 17(2), 21501 (2022)

    Article  ADS  Google Scholar 

  53. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A 53(4), 2046 (1996)

    Article  ADS  Google Scholar 

  54. Z. Zhao, J. W. Pan, and M. Zhan, Practical scheme for entanglement concentration, Phys. Rev. A 64(1), 014301 (2001)

    Article  ADS  Google Scholar 

  55. T. Yamamoto, M. Koashi, and N. Imoto, Concentration and purification scheme for two partially entangled photon pairs, Phys. Rev. A 64(1), 012304 (2001)

    Article  ADS  Google Scholar 

  56. Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient two-step entanglement concentration for arbitrary W states, Phys. Rev. A 85(4), 042302 (2012)

    Article  ADS  Google Scholar 

  57. Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A 85(1), 012307 (2012)

    Article  ADS  Google Scholar 

  58. F. G. Deng, Optimal nonlocal multipartite entanglement concentration based on projection measurements, Phys. Rev. A 85(2), 022311 (2012)

    Article  ADS  Google Scholar 

  59. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics, Phys. Rev. A 77(6), 062325 (2008)

    Article  ADS  Google Scholar 

  60. X. Yan, Y. F. Yu, and Z. M. Zhang, Entanglement concentration for a non-maximally entangled four-photon cluster state, Front. Phys. 9(5), 640 (2014)

    Article  ADS  Google Scholar 

  61. A. P. Liu, L. Y. Cheng, Q. Guo, S. L. Su, H. F. Wang, and S. Zhang, Heralded entanglement concentration of nonlocal photons assisted by double-sided optical microcavities, Phys. Scr. 94(9), 095103 (2019)

    Article  ADS  Google Scholar 

  62. S. S. Chen, H. Zhang, Q. Ai, and G. J. Yang, Phononic entanglement concentration via optomechanical interactions, Phys. Rev. A 100(5), 052306 (2019)

    Article  ADS  Google Scholar 

  63. J. Liu, L. Zhou, W. Zhong, and Y. B. Sheng, Logic bell state concentration with parity check measurement, Front. Phys. 14(2), 21601 (2019)

    Article  ADS  Google Scholar 

  64. B. C. Ren, F. F. Du, and F. G. Deng, Hyperentanglement concentration for two-photon four-qubit systems with linear optics, Phys. Rev. A 88(1), 012302 (2013)

    Article  ADS  Google Scholar 

  65. B. C. Ren and G. L. Long, General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities, Opt. Express 22(6), 6547 (2014)

    Article  ADS  Google Scholar 

  66. L. L. Fan, Y. Xia, and J. Song, Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics, Quantum Inform. Process. 13(9), 1967 (2014)

    Article  ADS  MATH  Google Scholar 

  67. X. H. Li and S. Ghose, Hyperentanglement concentration for time-bin and polarization hyperentangled photons, Phys. Rev. A 91(6), 062302 (2015)

    Article  ADS  Google Scholar 

  68. C. Cao, T. J. Wang, S. C. Mi, R. Zhang, and C. Wang, Nonlocal hyperconcentration on entangled photons using photonic module system, Ann. Phys. 369, 128 (2016)

    Article  ADS  MATH  Google Scholar 

  69. H. J. Liu, Y. Xia, and J. Song, Efficient hyperentanglement concentration for N-particle Greenberger-Horne-Zeilinger state assisted by weak cross-Kerr nonlinearity, Quantum Inform. Process. 15(5), 2033 (2016)

    Article  ADS  MATH  Google Scholar 

  70. B. C. Ren, H. Wang, F. Alzahrani, A. Hobiny, and F. G. Deng, Hyperentanglement concentration of nonlocal twophoton six-qubit systems with linear optics, Ann. Phys. 385, 86 (2017)

    Article  ADS  MATH  Google Scholar 

  71. M. Wang, J. Xu, F. Yan, and T. Gao, Entanglement concentration for polarization-spatial-time-bin hyperentangled bell states, Europhys. Lett. 123(6), 60002 (2018)

    Article  ADS  Google Scholar 

  72. H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics, Front. Phys. 13(5), 130315 (2018)

    Article  Google Scholar 

  73. X. Wang, X. Cai, Z. Su, M. Chen, D. Wu, L. Li, N. Liu, C. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)

    Article  ADS  Google Scholar 

  74. W. B. Gao, C. Y. Lu, X. C. Yao, P. Xu, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, Experimental demonstration of a hyperentangled ten-qubit Schrödinger cat state, Nat. Phys. 6(5), 331 (2010)

    Article  Google Scholar 

  75. X. L. Wang, Y. H. Luo, H. L. Huang, M. C. Chen, Z. E. Su, C. Liu, C. Chen, W. Li, Y. Q. Fang, X. Jiang, J. Zhang, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, 18-qubit entanglement with six photons three degrees of freedom, Phys. Rev. Lett. 120(26), 260502 (2018)

    Article  ADS  Google Scholar 

  76. Y. B. Sheng, F. G. Deng, and G. L. Long, Complete hyperentangled-Bell-state analysis for quantum communication, Phys. Rev. A 82(3), 032318 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11604226, 61901420, and 11804236, the Program of Beijing Municipal Commission of Education of China under Grant Nos. CIT&TCD201904080 and KM201810028005, Shanxi Province Science Foundation for Youths under Grant No. 201901D211235, Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi under Grant No. 2019L0507, Shanxi 1331 Project Key Subjects Construction, and Capital Normal University classified development Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang-Fang Du or Bao-Cang Ren.

Additional information

This article can also be found at https://doi.org/10.1007/s11467-021-1120-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Yu, CQ., Wang, ZX. et al. Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system. Front. Phys. 17, 31501 (2022). https://doi.org/10.1007/s11467-021-1120-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1120-7

Keywords

Navigation