Skip to main content
Log in

Logic Bell state concentration with parity check measurement

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Logic qubit plays an important role in current quantum communication. In this paper, we propose an efficient entanglement concentration protocol (ECP) for a new kind of logic Bell state, where the logic qubit is the concatenated Greenber–Horne–Zeilinger (C-GHZ) state. Our ECP relies on the nondemolition polarization parity check (PPC) gates constructed with cross-Kerr nonlinearity, and can distill one pair of maximally entangled logic Bell state from two same pairs of less-entangled logic Bell states. Benefit from the nondemolition PPC gates, the concentrated maximally entangled logic Bell state can be remained for further application. Moreover, our ECP can be repeated to further concentrate the less-entangled logic Bell state. By repeating the ECP, the total success probability can be effectively increased. Based on above features, this ECP may be useful in future long-distance quantum communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)

    ADS  Google Scholar 

  2. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  3. T. C. Li and Z. Q. Yin, Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator, Sci. Bull. 61(2), 163 (2016)

    MathSciNet  Google Scholar 

  4. M. D. G. Ramírez, B. J. Falaye, G. H. Sun, M. Cruz-Irisson, and S. H. Dong, Quantum teleportation and information splitting via four-qubit cluster state and a Bell state, Front. Phys. 12(5), 120306 (2017)

    Google Scholar 

  5. P. Y. Xiong, X. T. Yu, H. T. Zhan, and Z. C. Zhang, Multiple teleportation via partially entangled GHZ state, Front. Phys. 11(4), 110303 (2016)

    Google Scholar 

  6. A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  7. D. Y. Cao, B. H. Liu, Z. Wang, Y. F. Huang, C. F. Li, and G. C. Guo, Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons, Sci. Bull. 60(12), 1128 (2015)

    Google Scholar 

  8. G. L. Long and X. S. Liu, Theoretically efficient high capacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)

    ADS  Google Scholar 

  9. F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)

    ADS  Google Scholar 

  10. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, Quantum secure direct communication with high dimension quantum superdense coding, Phys. Rev. A 71(4), 044305 (2005)

    ADS  Google Scholar 

  11. J. Y. Hu, B. Yu, M. Y. Jing, L. T. Xiao, S. T. Jia, G. Q. Qin, and G. L. Long, Experimental quantum secure direct communication with single photons, Light Sci. Appl. 5(9), e16144 (2016)

    Google Scholar 

  12. W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B. S. Shi, and G. C. Guo, Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118(22), 220501 (2017)

    ADS  Google Scholar 

  13. F. Zhu, W. Zhang, Y. B. Sheng, and Y. D. Huang, Experimental long-distance quantum secret direct communication, Sci. Bull. 62(22), 1519 (2017)

    Google Scholar 

  14. Y. B. Sheng and L. Zhou, Distributed secure quantum machine learning, Sci. Bull. 62(14), 1025 (2017)

    Google Scholar 

  15. X. Q. Shao, T. Y. Zheng, and S. Zhang, Engineering steady three-atom singlet states via quantum-jump based feedback, Phys. Rev. A 85(4), 042308 (2012)

    ADS  Google Scholar 

  16. X. Q. Shao, T. Y. Zheng, C. H. Oh, and S. Zhang, Dissipative creation of three-dimensional entangled state in optical cavity via spontaneous emission, Phys. Rev. A 89(1), 012319 (2014)

    ADS  Google Scholar 

  17. X. Q. Shao, J. B. You, T. Y. Zheng, C. H. Oh, and S. Zhang, Stationary three-dimensional entanglement via dissipative Rydberg pumping, Phys. Rev. A 89(5), 052313 (2014)

    ADS  Google Scholar 

  18. T. Y. Ye, Robust quantum dialogue based on a shared auxiliary logical Bell state against collective noise, Sci. China Phys. Mech. Astron. 58, 040301 (2015)

    Google Scholar 

  19. W. Huang, Q. Su, B. J. Xu, B. Liu, F. Fan, H. Y. Jia, and Y. H. Yang, Improved multiparty quantum key agreement in travelling mode, Sci. China Phys. Mech. Astron. 59(12), 120311 (2016)

    Google Scholar 

  20. C. J. Liu, W. Ye, W. D. Zhou, H. L. Zhang, J. H. Huang, and L. Y. Hu, Entanglement of coherent superposition of photon-subtraction squeezed vacuum, Front. Phys. 12(5), 120307 (2017)

    Google Scholar 

  21. M. Y. Wang, F. L. Yan, and T. Gao, Generation of four photon polarization entangled decoherence-free states with cross-Kerr nonlinearity, Sci. Rep. 6(1), 38233 (2016)

    ADS  Google Scholar 

  22. A. Farouk, J. Batle, M. Elhoseny, M. Naseri, M. Lone, A. Fedorov, M. Alkhambashi, S. H. Ahmed, and M. Abdel- Aty, Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states, Front. Phys. 13(2), 130306 (2018)

    Google Scholar 

  23. J. Batle, A. Farouk, O. Tarawneh, and S. Abdalla, Multipartite quantum correlations among atoms in QED cavities, Front. Phys. 13(1), 130305 (2018)

    Google Scholar 

  24. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett. 76(5), 722 (1996)

    ADS  Google Scholar 

  25. W. Dür, H. J. Briegel, J. I. Cirac, and P. Zoller, Quantum repeaters based on entanglement purification, Phys. Rev. A 59(1), 169 (1999)

    ADS  Google Scholar 

  26. J. W. Pan, C. Simon, C. Brukner, and A. Zeilinger, Entanglement purification for quantum communication, Nature 410(6832), 1067 (2001)

    ADS  Google Scholar 

  27. D. Gonta and P. van Loock, High-fidelity entanglement purification using chains of atoms and optical cavities, Phys. Rev. A 86(5), 052312 (2012)

    ADS  Google Scholar 

  28. M. Zwerger, H. J. Briegel, and W. Dür, Universal and optimal error thresholds for measurement-based entanglement purification, Phys. Rev. Lett. 110(26), 260503 (2013)

    ADS  Google Scholar 

  29. M. Zwerger, H. J. Briegel, and W. Dür, Robustness of hashing protocols for entanglement purification, Phys. Rev. A 90(1), 012314 (2014)

    ADS  Google Scholar 

  30. J. Z. Bernád, J. M. Torres, L. Kunz, and G. Alber, Multiphoton-state-assisted entanglement purification of material qubits, Phys. Rev. A 93(3), 032317 (2016)

    ADS  Google Scholar 

  31. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, Concentrating partial entanglement by local operations, Phys. Rev. A 53(4), 2046 (1996)

    ADS  Google Scholar 

  32. S. Bose, V. Vedral, and P. L. Knight, Purification via entanglement swapping and conserved entanglement, Phys. Rev. A 60(1), 194 (1999)

    ADS  Google Scholar 

  33. T. Yamamoto, M. Koashi, and N. Imoto, Concentration and purification scheme for two partially entangled photon pairs, Phys. Rev. A 64(1), 012304 (2001)

    ADS  Google Scholar 

  34. Z. Zhao, J. W. Pan, and M. S. Zhan, Practical scheme for entanglement concentration, Phys. Rev. A 64(1), 014301 (2001)

    ADS  Google Scholar 

  35. Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs, Phys. Rev. A 85(1), 012307 (2012)

    ADS  Google Scholar 

  36. F. G. Deng, Optimal nonlocal multipartite entanglement concentration based on projection measurements, Phys. Rev. A 85(2), 022311 (2012)

    ADS  MathSciNet  Google Scholar 

  37. Y. B. Sheng, L. Zhou, and S. M. Zhao, Efficient two-step entanglement concentration for arbitrary W states, Phys. Rev. A 85(4), 042302 (2012)

    ADS  Google Scholar 

  38. Z. H. Peng, J. Zou, X. J. Liu, Y. J. Xiao, and L. M. Kuang, Atomic and photonic entanglement concentration via photonic Faraday rotation, Phys. Rev. A 86(3), 034305 (2012)

    ADS  Google Scholar 

  39. C. Cao, C. Wang, L. Y. He, and R. Zhang, Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime, Opt. Express 21(4), 4093 (2013)

    ADS  Google Scholar 

  40. Y. B. Sheng, J. Pan, R. Guo, L. Zhou, and L. Wang, Efficient N-particle W state concentration with different parity check gates, Sci. China Phys. Mech. Astron. 58(6), 060301 (2015)

    Google Scholar 

  41. M. Y. Wang, F. L. Yan, and J. Z. Xu, Perfect entanglement concentration of an arbitrary four-photon polarization entangled state via quantum nondemolition detectors, J. Phys. B-At. Mol. Opt. 49(15), 155502 (2016)

    ADS  Google Scholar 

  42. C. C. Qu, L. Zhou, and Y. B. Sheng, Entanglement concentration for concatenated Greenberger–Horne–Zeilinger state, Quantum Inform. Process 14(11), 4131 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  43. J. Pan, L. Zhou, S. P. Gu, X. F. Wang, Y. B. Sheng, and Q. Wang, Efficient entanglement concentration for concatenated Greenberger–Horne–Zeilinger state with the cross-Kerr nonlinearity, Quantum Inform. Process 15(4), 1669 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  44. A. M. Steane and B. Ibinson, Fault-tolerant logical gate networks for Calderbank–Shor–Steane codes, Phys. Rev. A 72(5), 052335 (2005)

    ADS  Google Scholar 

  45. S. Muralidharan, C. L. Zou, L. S. Li, J. M. Wen, and L. Jiang, Overcoming erasure errors with multilevel systems, New J. Phys. 19(1), 013026 (2017)

    ADS  Google Scholar 

  46. F. Fröwis and W. Dür, Stable macroscopic quantum superpositions, Phys. Rev. Lett. 106(11), 110402 (2011)

    ADS  Google Scholar 

  47. H. Lu, L. K. Chen, C. Liu, P. Xu, X. C. Yao, L. Li, N. L. Liu, B. Zhao, Y. A. Chen, and J. W. Pan, Experimental realization of a concatenated Greenberger–Horne–Zeilinger state for macroscopic quantum superpositions, Nat. Photonics 8(5), 364 (2014)

    ADS  Google Scholar 

  48. F. Fröwis and W. Dür, Stability of encoded macroscopic quantum superpositions, Phys. Rev. A 85(5), 052329 (2012)

    ADS  Google Scholar 

  49. F. Kesting, F. Fröwis, and W. Dür, Effective noise channels for encoded quantum systems, Phys. Rev. A 88(4), 042305 (2013)

    ADS  Google Scholar 

  50. D. Ding, F. L. Yan, and T. Gao, Preparation of kmphoton concatenated Greenberger–Horne–Zeilinger states for observing distinctive quantum effects at macroscopic scales, JOSA B 30(11), 3075 (2013)

    ADS  Google Scholar 

  51. L. Zhou and Y. B. Sheng, Complete logic Bell-state analysis assisted with photonic Faraday rotation, Phys. Rev. A 92(4), 042314 (2015)

    ADS  Google Scholar 

  52. Y. B. Sheng and L. Zhou, Two-step complete polarization logic Bell-state analysis, Sci. Rep. 5(1), 13453 (2015)

    ADS  Google Scholar 

  53. L. Zhou and Y. B. Sheng, Feasible logic Bell-state analysis with linear optics, Sci. Rep. 6(1), 20901 (2016)

    ADS  Google Scholar 

  54. T. C. Ralph, A. J. F. Hayes, and A. Gilchrist, Losstolerant optical qubits, Phys. Rev. Lett. 95(10), 100501 (2005)

    ADS  Google Scholar 

  55. A. Gilchrist, A. J. F. Hayes, and T. C. Ralph, Efficient parity-encoded optical quantum computing, Phys. Rev. A 75(5), 052328 (2007)

    ADS  Google Scholar 

  56. J. Borregaard, A. S. Sørensen, J. I. Cirac, and M. D. Lukin, Efficient quantum computation in a network with probabilistic gates and logical encoding, Phys. Rev. A 95(4), 042312 (2017)

    ADS  Google Scholar 

  57. S. Muralidharan, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, Ultrafast and fault-tolerant quantum communication across long distances, Phys. Rev. Lett. 112(25), 250501 (2014)

    ADS  Google Scholar 

  58. F. Ewert, M. Bergmann, and P. van Loock, Ultrafast long-distance quantum communication with static linear optics, Phys. Rev. Lett. 117(21), 210501 (2016)

    ADS  Google Scholar 

  59. K. Nemoto and W. J. Munro, Nearly deterministic linear optical controlled-not gate, Phys. Rev. Lett. 93(25), 250502 (2004)

    ADS  Google Scholar 

  60. B. He, Q. Lin, and C. Simon, Cross-Kerr nonlinearity between continuous-mode coherent states and single photons, Phys. Rev. A 83(5), 053826 (2011)

    ADS  Google Scholar 

  61. Y. Q. He, D. Ding, F. L. Yan, and T. Gao, Exploration of photon-number entangled states using weak nonlinearities, Opt. Express 23(17), 21671 (2015)

    ADS  Google Scholar 

  62. X. M. Xiu, Q. Y. Li, Y. F. Lin, H. K. Dong, L. Dong, and Y. J. Gao, Preparation of four-photon polarization entangled decoherence-free states employing weak cross- Kerr nonlinearities, Phys. Rev. A 94(4), 042321 (2016)

    ADS  Google Scholar 

  63. L. Dong, Y. F. Yin, C. Cui, H. K. Dong, X. M. Xiu, and Y. J. Gao, Fault-tolerant distribution of GHZ states and controlled DSQC based on parity analyses, Opt. Express 25(16), 18581 (2017)

    ADS  Google Scholar 

  64. L. Dong, J. X. Wang, Q. Y. Li, H. Z. Shen, H. K. Dong, X. M. Xiu, and Y. J. Gao, Single logical qubit information encoding scheme with the minimal optical decoherence free subsystem, Opt. Lett. 41(5), 1030 (2016)

    ADS  Google Scholar 

  65. L. Dong, Y. F. Lin, Q. Y. Li, H. K. Dong, X. M. Xiu, and Y. J. Gao, Generation of three-photon polarization entangled decoherence-free states, Ann. Phys. 371, 287 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  66. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, Linear optical quantum computing with photonic qubits, Rev. Mod. Phys. 79(1), 135 (2007)

    ADS  Google Scholar 

  67. G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Observation of quantum state collapse and revival due to the single-photon Kerr effect, Nature 495(7440), 205 (2013)

    ADS  Google Scholar 

  68. A. Feizpour, M. Hallaji, G. Dmochowski, and A. M. Steinberg, Observation of the nonlinear phase shift due to single post-selected photons, Nat. Phys. 11(11), 905 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11474168 and 11747161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Bo Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Zhou, L., Zhong, W. et al. Logic Bell state concentration with parity check measurement. Front. Phys. 14, 21601 (2019). https://doi.org/10.1007/s11467-018-0866-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-018-0866-z

Keywords

Navigation