Skip to main content
Log in

Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

MoS2 is a promising candidate for hydrogen evolution reaction (HER), while its active sites are mainly distributed on the edge sites rather than the basal plane sites. Herein, a strategy to overcome the inertness of the MoS2 basal surface and achieve high HER activity by combining single-boron catalyst and compressive strain was reported through density functional theory (DFT) computations. The ab initio molecular dynamics (AIMD) simulation on B@MoS2 suggests high thermodynamic and kinetic stability. We found that the rather strong adsorption of hydrogen by B@MoS2 can be alleviated by stress engineering. The optimal stress of −7% can achieve a nearly zero value of ΔGH (~ −0.084 eV), which is close to that of the ideal Pt-SACs for HER. The novel HER activity is attributed to (i) the B-doping brings the active site to the basal plane of MoS2 and reduces the band-gap, thereby increasing the conductivity; (ii) the compressive stress regulates the number of charge transfer between (H)-(B)-(MoS2), weakening the adsorption energy of hydrogen on B@MoS2. Moreover, we constructed a SiN/B@MoS2 heterojunction, which introduces an 8.6% compressive stress for B@MoS2 and yields an ideal ΔGH. This work provides an effective means to achieve high intrinsic HER activity for MoS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Ding, B. Song, P. Xu, and S. Jin, Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds, Chem. 1(5), 699 (2016)

    Article  Google Scholar 

  2. J. R. McKone, N. S. Lewis, and H. B. Gray, Will solar-driven water-splitting devices see the light of day? Chem. Mater. 26(1), 407 (2014)

    Article  Google Scholar 

  3. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Solar water splitting cells, Chem. Rev. 110(11), 6446 (2010)

    Article  Google Scholar 

  4. A. J. Bard and M. A. Fox, Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen, Acc. Chem. Res. 28(3), 141 (1995)

    Article  Google Scholar 

  5. Z. Wang, J. Qin, Q. Hu, D. Wang, F. Wang, Y. Zhong, J. Zhang, H. Zhou, M. Dong, and C. Hu, Theoretical investigation of molybdenum/tungsten-vanadium solid solution alloy membranes: Thermodynamic stability and hydrogen permeation, J. Membrane Sci. 608, 118200 (2020)

    Article  Google Scholar 

  6. Y. Zhao, F. Liu, J. Tan, P. Li, Z. Wang, K. Zhu, X. Mai, H. Liu, X. Wang, and Y. Ma, Preparation and hydrogen storage of Pd/MIL-101 nanocomposites, J. Alloys Compounds 772, 186 (2019)

    Article  Google Scholar 

  7. Q. Chen, Q. Yin, A. Dong, Y. Gao, Y. Qian, D. Wang, M. Dong, Q. Shao, H. Liu, and B.-H. Han, Metal complex hybrid composites based on fullerene-bearing porous polycarbazole for H2, CO2 and CH4 uptake and heterogeneous hydrogenation catalysis, J. Polymer 169, 255 (2019)

    Article  Google Scholar 

  8. J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc. 152(3), J23 (2005)

    Article  Google Scholar 

  9. J. O’M. Bockris and E. C. Potter, The mechanism of the cathodic hydrogen evolution reaction, J. Electrochem. Soc. 99, 169 (1952)

    Article  Google Scholar 

  10. B. Lin, Z. Lin, S. Chen, M. Yu, W. Li, Q. Gao, M. Dong, Q. Shao, S. Wu, T. Ding, and Z. Guo, Surface intercalated spherical MoS2xSe2(1−x) nanocatalysts for highly efficient and durable hydrogen evolution reactions, Dalton Trans. 48(23), 8279 (2019)

    Article  Google Scholar 

  11. Z. Lin, B. Lin, Z. Wang, S. Chen, C. Wang, M. Dong, Q. Gao, Q. Shao, T. Ding, H. Liu, S. Wu, and Z. Guo, Facile preparation of 1T/2H-Mo (S1-xSex)2 nanoparticles for boosting hydrogen evolution reaction, ChemCatChem 11(8), 2217 (2019)

    Article  Google Scholar 

  12. T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, and D. G. Nocera, Solar energy supply and storage for the legacy and Nonlegacy worlds, Chem. Rev. 110(11), 6474 (2010)

    Article  Google Scholar 

  13. B. You, M. T. Tang, C. Tsai, F. Abild-Pedersen, X. Zheng, and H. Li, Enhancing electrocatalytic water splitting by strain Engineering, Adv. Mater. 31(17), 1807001 (2019)

    Article  Google Scholar 

  14. D. Y. Chung, S. K. Park, Y. H. Chung, S. H. Yu, D. H. Lim, N. Jung, H. C. Ham, H. Y. Park, Y. Piao, S. J. Yoo, and Y. E. Sung, Edge-exposed MoS2 nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction, Nanoscale 6(4), 2131 (2014)

    Article  ADS  Google Scholar 

  15. H. T. Du, R. M. Kong, X. X. Guo, F. L. Qu, and J. H. Li, Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution, Nanoscale 10(46), 21617 (2018)

    Article  Google Scholar 

  16. Y. Hong, E. L. Liu, J. Y. Shi, X. Lin, L. Z. Sheng, M. Zhang, L. Y. Wang, and J. H. Chen, A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution, Int. J. Hydrogen Energy 44(14), 7194 (2019)

    Article  Google Scholar 

  17. C. B. Ma, X. Y. Qi, B. Chen, S. Y. Bao, Z. Y. Yin, X. J. Wu, Z. M. Luo, J. Wei, H. L. Zhang, and H. Zhang, MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction, Nanoscale 6(11), 5624 (2014)

    Article  ADS  Google Scholar 

  18. Z. J. Ma, Z. T. Cui, Y. H. Lv, R. J. Sa, K. C. Wu, and Q. H. Li, Three-in-one: Opened charge-transfer channel, positively shifted oxidation potential, and enhanced visible light response of g-C3N4 photocatalyst through K and S Co-doping, Int. J. Hydrogen Energy 45(7), 4534 (2020)

    Article  Google Scholar 

  19. Z. J. Ma, R. J. Sa, Q. H. Li, and K. C. Wu, Interfacial electronic structure and charge transfer of hybrid graphene quantum dot and graphitic carbon nitride nanocomposites: Insights into high efficiency for photocatalytic solar water splitting, Phys. Chem. Chem. Phys. 18(2), 1050 (2016)

    Article  Google Scholar 

  20. Y. Pan and M. Wen, Noble metals enhanced catalytic activity of anatase TiO2 for hydrogen evolution reaction, Int. J. Hydrogen Energy 43(49), 22055 (2018)

    Article  Google Scholar 

  21. Z. H. Pu, I. S. Amiinu, M. Wang, Y. S. Yang, and S. C. Mu, Semimetallic MoP2: An active and stable hydrogen evolution electrocatalyst over the whole pH range, Nanoscale 8(16), 8500 (2016)

    Article  ADS  Google Scholar 

  22. Y. Q. Sun, L. F. Hang, Q. Shen, T. Zhang, H. L. Li, X. M. Zhang, X. J. Lyu, and Y. Li, Mo doped Ni2P nanowire arrays: An efficient electrocatalyst for the hydrogen evolution reaction with enhanced activity at all pH values, Nanoscale 9(43), 16674 (2017)

    Article  Google Scholar 

  23. S. Zhou, X. W. Yang, W. Pei, N. S. Liu, and J. J. Zhao, Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts, Nanoscale 10(23), 10876 (2018)

    Article  Google Scholar 

  24. X. Li, P. Wang, Y. Q. Wu, Z. H. Liu, Q. Q. Zhang, T. T. Zhang, Z. Y. Wang, Y. Y. Liu, Z. K. Zheng, and B. B. Huang, ZnGeP2: A near-infrared-activated photocatalyst for hydrogen production, Front. Phys. 15(2), 23604 (2020)

    Article  ADS  Google Scholar 

  25. X. Zhang, X. Li, F. Jiang, W. Du, C. Hou, Z. Xu, L. Zhu, Z. Wang, H. Liu, W. Zhou, and H. Yuan, Improved electrochemical performance of 2D accordion-like MnV2O6 nanosheets as anode materials for Li-ion batteries, Dalton Trans. 49(6), 1794 (2020)

    Article  Google Scholar 

  26. C. Hou, Y. Hou, Y. Fan, Y. Zhai, Y. Wang, Z. Sun, R. Fan, F. Dang, and J. Wang, Oxygen vacancy derived local build-in electric field in mesoporous hollow Co3O4 microspheres promotes high-performance Li-ion batteries, J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6967 (2018)

    Google Scholar 

  27. C. Hou, J. Wang, W. Du, J. Wang, Y. Du, C. Liu, J. Zhang, H. Hou, F. Dang, L. Zhao, and Z. Guo, One-pot synthesized molybdenum dioxide-molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage, J. Mater. Chem. A Mater. Energy Sustain. 7(22), 13460 (2019)

    Article  Google Scholar 

  28. M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013)

    Article  Google Scholar 

  29. M. Xu, T. Liang, M. Shi, and H. Chen, Graphene-like two-dimensional materials, Chem. Rev. 113(5), 3766 (2013)

    Article  Google Scholar 

  30. R. R. Chianelli, M. H. Siadati, M. P. De la Rosa, G. Berhault, J. P. Wilcoxon, R. Jr Bearden, and B. L. Abrams, Catalytic properties of single layers of transition metal sulfide catalytic materials, Catal. Rev. 48(1), 1 (2006)

    Article  Google Scholar 

  31. J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)

    Article  ADS  Google Scholar 

  32. H. M. Dong, S. D. Guo, Y. F. Duan, F. Huang, W. Xu, and J. Zhang, Electronic and optical properties of single-layer MoS2, Front. Phys. 13(4), 137307 (2018)

    Article  ADS  Google Scholar 

  33. J. C. Lei, X. Zhang, and Z. Zhou, Recent advances in MXene: Preparation, properties, and applications, Front. Phys. 10(3), 276 (2015)

    Article  ADS  Google Scholar 

  34. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically Thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)

    Article  ADS  Google Scholar 

  35. P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan, and H. Toulhoat, Ab initio study of the H2+-H2 S/MoS2 gas-solid interface: The nature of the catalytically active sites, J. Catal. 189(1), 129 (2000)

    Article  Google Scholar 

  36. H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Norskov, and X. Zheng, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nat. Mater. 15(1), 48 (2016)

    Article  ADS  Google Scholar 

  37. D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao, and Y. Cui, Synthesis of MoS2 and MoSe2 films with vertically aligned layers, Nano Lett. 13(3), 1341 (2013)

    Article  ADS  Google Scholar 

  38. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, MoS2 Nanoparticles Grown on Graphene: An advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc. 133(19), 7296 (2011)

    Article  Google Scholar 

  39. Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara, and T. F. Jaramillo, Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials, Nano Lett. 11(10), 4168 (2011)

    Article  ADS  Google Scholar 

  40. J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. D. Lou, and Y. Xie, Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution, Adv. Mater. 25(40), 5807 (2013)

    Article  Google Scholar 

  41. J. Kibsgaard, Z. Chen, B. N. Reinecke, and T. F. Jaramillo, Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis, Nat. Mater. 11(11), 963 (2012)

    Article  ADS  Google Scholar 

  42. H. Wang, C. Tsai, D. Kong, K. Chan, F. Abild-Pedersen, J. K. Nørskov, and Y. Cui, Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution, Nano Res. 8(2), 566 (2015)

    Article  Google Scholar 

  43. R. Lang, T. Li, D. Matsumura, S. Miao, Y. Ren, Y. T. Cui, Y. Tan, B. Qiao, L. Li, A. Wang, X. Wang, and T. Zhang, Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3, Angew. Chem. Int. Ed. 55(52), 16054 (2016)

    Article  Google Scholar 

  44. P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, and N. Zheng, Photochemical route for synthesizing atomically dispersed palladium catalysts, Science 352(6287), 797 (2016)

    Article  ADS  Google Scholar 

  45. F. Chen, X. Jiang, L. Zhang, R. Lang, and B. Qiao, Single-atom catalysis: Bridging the homo- and heterogeneous catalysis, Chin. J. Catal. 39(5), 893 (2018)

    Article  Google Scholar 

  46. Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, and Y. Li, Single-atom catalysts: Synthetic strategies and electrochemical applications, Joule 2(7), 1242 (2018)

    Article  Google Scholar 

  47. Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. B. Chorkendorff, J. K. Norskov, and T. F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Sci 355(6321), eaad4998 (2017)

    Article  Google Scholar 

  48. L. Fan, P. F. Liu, X. Yan, L. Gu, Z. Z. Yang, H. G. Yang, S. Qiu, and X. Yao, Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis, Nat. Commun. 7(1), 10667 (2016)

    Article  ADS  Google Scholar 

  49. H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby, K. L. More, and P. Zelenay, Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst, Science 357(6350), 479 (2017)

    Article  ADS  Google Scholar 

  50. Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang, and Y. Li, Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction, Angew. Chem. Int. Ed. 56(24), 6937 (2017)

    Article  Google Scholar 

  51. A. Zitolo, N. Ranjbar-Sahraie, T. Mineva, J. Li, Q. Jia, S. Stamatin, G. F. Harrington, S. M. Lyth, P. Krtil, S. Mukerjee, E. Fonda, and F. Jaouen, Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction, Nat. Mater. 8, 957 (2017)

    Google Scholar 

  52. Z. Ma, Z. Cui, C. Xiao, W. Dai, Y. Lv, Q. Li, and R. Sa, Theoretical screening of efficient single-atom catalysts for nitrogen fixation based on a defective BN monolayer, Nanoscale 12(3), 1541 (2020)

    Article  Google Scholar 

  53. J. Zhang, Y. Zhao, X. Guo, C. Chen, C. L. Dong, R. S. Liu, C. P. Han, Y. Li, Y. Gogotsi, and G. Wang, Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction, Nat. Catal. 1(12), 985 (2018)

    Article  Google Scholar 

  54. T. He, S. M. Chen, B. Ni, Y. Gong, Z. Wu, L. Song, L. Gu, W. P. Hu, and X. Wang, Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms, Angew. Chem. Int. Ed. 57(13), 3493 (2018)

    Article  Google Scholar 

  55. Y. Guo, S. Mei, K. Yuan, D. J. Wang, H. C. Liu, C. H. Yan, and Y. W. Zhang, Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metalsupport interactions and H-spillover effect, ACS Catal. 8(7), 6203 (2018)

    Article  Google Scholar 

  56. C. H. Zhang, J. W. Sha, H. L. Fei, M. J. Liu, S. Yazdi, J. B. Zhang, Q. F. Zhong, X. L. Zou, N. Q. Zhao, H. S. Yu, Z. Jiang, E. Ringe, B. I. Yakobson, J. C. Dong, D. L. Chen, and J. M. Tour, Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium, ACS Nano 11(7), 6930 (2017)

    Article  Google Scholar 

  57. T. Yang, T. T. Song, J. Zhou, S. J. Wang, D. Z. Chi, L. Shen, M. Yang, and Y. P. Feng, High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation, Nano Energy 68, 104304 (2020)

    Article  Google Scholar 

  58. L. Han, X. Liu, J. Chen, R. Lin, H. Liu, F. Lue, S. Bak, Z. Liang, S. Zhao, E. Stavitski, J. Luo, R. R. Adzic, and H. L. Xin, Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation, Angew. Chem. Int. Ed. 58(8), 2321 (2019)

    Article  Google Scholar 

  59. Y. T. Qu, Z. J. Li, W. X. Chen, Y. Lin, T. W. Yuan, Z. K. Yang, C. M. Zhao, J. Wang, C. Zhao, X. Wang, F. Y. Zhou, Z. B. Zhuang, Y. Wu, and Y. D. Li, Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms, Nat. Catal. 1(10), 781 (2018)

    Article  Google Scholar 

  60. M. D. Marcinkowski, M. T. Darby, J. L. Liu, J. M. Wimble, F. R. Lucci, S. Lee, A. Michaelides, M. Flytzani-Stephanopoulos, M. Stamatakis, and E. C. H. Sykes, Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation, Nat. Chem. 10(3), 325 (2018)

    Article  Google Scholar 

  61. Y. Zhou, G. Gao, Y. Li, W. Chu, and L. W. Wang, Transition-metal single atoms in nitrogen-doped graphenes as efficient active centers for water splitting: A theoretical study, Phys. Chem. Chem. Phys. 21(6), 3024 (2019)

    Article  Google Scholar 

  62. L. Yang, D. Cheng, X. Zeng, X. Wan, J. Shui, Z. Xiang, and D. Cao, Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction, Proc. Natl. Acad. Sci. USA 115(26), 6626 (2018)

    Article  ADS  Google Scholar 

  63. X. X. Wang, D. A. Cullen, Y. T. Pan, S. Hwang, M. Wang, Z. Feng, J. Wang, M. H. Engelhard, H. Zhang, Y. He, Y. Shao, D. Su, K. L. More, J. S. Spendelow, and G. Wu, Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells, Adv. Mater. 30(11), 1706758 (2018)

    Article  Google Scholar 

  64. X. J. Cui, J. P. Xiao, Y. H. Wu, P. P. Du, R. Si, H. X. Yang, H. F. Tian, J. Q. Li, W. H. Zhang, D. H. Deng, and X. H. Bao, A graphene composite material with single cobalt active sites: A highly efficient counter electrode for dye-sensitized solar cells, Angew. Chem. Int. Ed. 55(23), 6708 (2016)

    Article  Google Scholar 

  65. Q. Tang and D. E. Jiang, Phosphorene-supported transition-metal dimer for effective N2 electroreduction, ChemPhysChem 20(22), 3141 (2019)

    Article  Google Scholar 

  66. Y. Cao, S. Deng, Q. Fang, X. Sun, C. Zhao, J. Zheng, Y. Gao, H. Zhuo, Y. Li, Z. Yao, Z. Wei, X. Zhong, G. Zhuang, and J. Wang, Single and double boron atoms doped nanoporous C2N-h2D electrocatalysts for highly efficient N2 reduction reaction: A density functional theory study, Nanotechnology 30(33), 335403 (2019)

    Article  Google Scholar 

  67. M.-A. Légaré, G. Bélanger-Chabot, R. D. Dewhurst, E. Welz, I. Krummenacher, B. Engels, and H. Braunschweig, Nitrogen fixation and reduction at boron, Science 359(6378), 896 (2018)

    Article  ADS  Google Scholar 

  68. S. Zheng, S. Li, Z. Mei, Z. Hu, M. Chu, J. Liu, X. Chen, and F. Pan, Electrochemical nitrogen reduction reaction performance of single-boron catalysts tuned by MXene substrates, J. Phys. Chem. Lett. 10(22), 6984 (2019)

    Article  Google Scholar 

  69. C. Ling, X. Niu, Q. Li, A. Du, and J. Wang, Metal-free single atom catalyst for N2 fixation driven by visible light, J. Am. Chem. Soc. 140(43), 14161 (2018)

    Article  Google Scholar 

  70. K. Bhattacharyya and A. Datta, Visible light driven efficient metal free single atom catalyst supported on nanoporous carbon nitride for nitrogen fixation, Phys. Chem. Chem. Phys. 21(23), 12346 (2019)

    Article  Google Scholar 

  71. Y. Zhao, T. Ling, S. Chen, B. Jin, A. Vasileff, Y. Jiao, L. Song, J. Luo, and S. Z. Qiao, Non-metal single-iodine-atom electrocatalysts for the hydrogen evolution reaction, Angew. Chem. Int. Ed. 58(35), 12252 (2019)

    Article  Google Scholar 

  72. C. Liu, Q. Li, C. Wu, J. Zhang, Y. Jin, D. R. MacFarlane, and C. Sun, Single-boron catalysts for nitrogen reduction reaction, J. Am. Chem. Soc. 141(7), 2884 (2019)

    Article  Google Scholar 

  73. B. T. Sneed, A. P. Young, and C. K. Tsung, Building up strain in colloidal metal nanoparticle catalysts, Nanoscale 7(29), 12248 (2015)

    Article  ADS  Google Scholar 

  74. M. Luo and S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials, Nat. Rev. Mater. 2(11), 17059 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  75. M. Tang, L. Liu, Y. Cheng, and G. F. Ji, First-principles study of structural, elastic, and electronic properties of CeB6 under pressure, Front. Phys. 10(6), 107104 (2015)

    Article  ADS  Google Scholar 

  76. X. Xie, C. Ni, Z. Lin, D. Wu, X. Sun, Y. Zhang, B. Wang, and W. Du, Phase and morphology evolution of high dielectric CoO/Co3O4 particles with Co3O4 nanoneedles on surface for excellent microwave absorption application, J. Chem. Eng. 396, 125205 (2020)

    Article  Google Scholar 

  77. E. L. Clark, C. Hahn, T. F. Jaramillo, and A. T. Bell, Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity, J. Am. Chem. Soc. 139(44), 15848 (2017)

    Article  Google Scholar 

  78. Z. Lu, G. Chen, Y. Li, H. Wang, J. Xie, L. Liao, C. Liu, Y. Liu, T. Wu, Y. Li, A. C. Luntz, M. Bajdich, and Y. Cui, Identifying the active surfaces of electrochemically tuned LiCoO2 for oxygen evolution reaction, J. Am. Chem. Soc. 139(17), 6270 (2017)

    Article  Google Scholar 

  79. T. A. Maark and A. A. Peterson, Understanding strain and ligand effects in hydrogen evolution over Pd(111) surfaces, J. Phys. Chem. C 118(8), 4275 (2014)

    Article  Google Scholar 

  80. J. R. Petrie, V. R. Cooper, J. W. Freeland, T. L. Meyer, Z. Zhang, D. A. Lutterman, and H. N. Lee, Enhanced bifunctional oxygen catalysis in strained LaNiO3 perovskites, J. Am. Chem. Soc. 138(8), 2488 (2016)

    Article  Google Scholar 

  81. B. T. Sneed, C. N. Brodsky, C. H. Kuo, L. K. Lamontagne, Y. Jiang, Y. Wang, F. Tao, W. Huang, and C. K. Tsung, Nanoscale-phase-separated Pd-Rh boxes synthesized via metal migration: An archetype for studying lattice strain and composition effects in electrocatalysis, J. Am. Chem. Soc. 135(39), 14691 (2013)

    Article  Google Scholar 

  82. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney, and A. Nilsson, Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts, Nat. Chem. 2(6), 454 (2010)

    Article  Google Scholar 

  83. H. A. Tahini, X. Tan, U. Schwingenschlogl, and S. C. Smith, Formation and migration of oxygen vacancies in SrCoO3 and their effect on oxygen evolution reactions, ACS Catal. 6(8), 5565 (2016)

    Article  Google Scholar 

  84. M. Mavrikakis, B. Hammer, and J. K. Nørskov, Effect of strain on the reactivity of metal surfaces, Phys. Rev. Lett. 81(13), 2819 (1998)

    Article  ADS  Google Scholar 

  85. S. Alayoglu, A. U. Nilekar, M. Mavrikakis, and B. Eichhorn, Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen, Nat. Mater. 7(4), 333 (2008)

    Article  ADS  Google Scholar 

  86. M. Du, L. Cui, Y. Cao, and A. J. Bard, Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate, J. Am. Chem. Soc. 137(23), 7397 (2015)

    Article  Google Scholar 

  87. M. Escudero-Escribano, A. Verdaguer-Casadevall, P. Malacrida, U. Gronbjerg, B. P. Knudsen, A. K. Jepsen, J. Rossmeisl, I. E. Stephens, and I. Chorkendorff, Pt5Gd as a highly active and stable catalyst for oxygen electroreduction, J. Am. Chem. Soc. 134(40), 16476 (2012)

    Article  Google Scholar 

  88. H. Shi, H. Pan, Y. W. Zhang, and B. I. Yakobson, Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2, Phys. Rev. B 87(15), 155304 (2013)

    Article  ADS  Google Scholar 

  89. E. Scalise, M. Houssa, G. Pourtois, V. Afanas’ev, and A. Stesmans, Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2, Nano Res. 5(1), 43 (2012)

    Article  Google Scholar 

  90. H. Pan and Y. W. Zhang, Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering, J. Phys. Chem. C 116(21), 11752 (2012)

    Article  Google Scholar 

  91. P. E. Blochl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)

    Article  ADS  Google Scholar 

  92. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  93. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)

    Article  ADS  Google Scholar 

  94. A. Du, S. Sanvito, Z. Li, D. Wang, Y. Jiao, T. Liao, Q. Sun, Y. H. Ng, Z. Zhu, R. Amal, and S. C. Smith, Hybrid graphene and graphitic carbon nitride nanocomposite: Gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response, J. Am. Chem. Soc. 134(9), 4393 (2012)

    Article  Google Scholar 

  95. S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections, J. Comput. Chem. 25(12), 1463 (2004)

    Article  Google Scholar 

  96. F. Li and Q. Tang, A di-boron pair doped MoS2 (B2@MoS2) single-layer shows superior catalytic performance for electrochemical nitrogen activation and reduction, Nanoscale 11(40), 18769 (2019)

    Article  Google Scholar 

  97. D. Ma, W. Ju, T. Li, X. Zhang, C. He, B. Ma, Z. Lu, and Z. Yang, The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: A first-principles study, Appl. Surf. Sci. 383, 98 (2016)

    Article  ADS  Google Scholar 

  98. J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff, and J. K. Norskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nat. Mater. 5(11), 909 (2006)

    Article  ADS  Google Scholar 

  99. B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution, J. Am. Chem. Soc. 127(15), 5308 (2005)

    Article  Google Scholar 

  100. Á. Valdés, Z.-W. Qu, G.-J. Kroes, J. Rossmeisl, and J. K. Nørskov, Oxidation and photo-oxidation of water on TiO2 surface, J. Phys. Chem. C 112(26), 9872 (2008)

    Article  Google Scholar 

  101. J. Rossmeisl, Z. W. Qu, H. Zhu, G. J. Kroes, and J. K. Norskov, Electrolysis of water on oxide surfaces, J. Electroanal. Chem. 607(1–2), 83 (2007)

    Article  Google Scholar 

  102. NIST Standard Reference Database 13, https://janaf.nist.gov

  103. L. Peng, X. Zheng, L. Li, L. Zhang, N. Yang, K. Xiong, H. Chen, J. Li, and Z. Wei, Chimney effect of the interface in metal oxide/metal composite catalysts on the hydrogen evolution reaction, Appl. Catal. B 245, 122 (2019)

    Article  Google Scholar 

  104. X. Lin, W. Li, Y. Dong, C. Wang, Q. Chen, and H. Zhang, Two-dimensional metallic MoS2: A DFT study, Comput. Mater. Sci. 124, 49 (2016)

    Article  Google Scholar 

  105. X. Wen, S. Yu, Y. Wang, Y. Liu, H. Wang, and J. Zhao, Doping MoS2 monolayer with nonmetal atoms to tune its electronic and magnetic properties, and chemical activity: A computational study, New J. Chem. 43(15), 5766 (2019)

    Article  Google Scholar 

  106. D. Yang, S. J. Sandoval, W. M. Divigalpitiya, J. C. Irwin, and R. F. Frindt, Structure of single-molecular-layer MoS2, Phys. Rev. B 43(14), 12053 (1991)

    Article  ADS  Google Scholar 

  107. H. Cui, X. Zhang, G. Zhang, and J. Tang, Pd-doped MoS2 monolayer: A promising candidate for DGA in transformer oil based on DFT method, Appl. Surf. Sci. 470, 1035 (2019)

    Article  ADS  Google Scholar 

  108. D. Ma, Y. Tang, G. Yang, J. Zeng, C. He, and Z. Lu, CO catalytic oxidation on iron-embedded monolayer MoS2, Appl. Surf. Sci. 328, 32871 (2015)

    Article  Google Scholar 

  109. D. Ma, W. Ju, T. Li, X. Zhang, C. He, B. Ma, Y. Tang, Z. Lu, and Z. Yang, Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals, Appl. Surf. Sci. 364, 181 (2016)

    Article  ADS  Google Scholar 

  110. S. Bertolazzi, J. Brivio, and A. Kis, Stretching and Breaking of Ultrathin MoS2, ACS Nano 5(12), 9703 (2011)

    Article  Google Scholar 

  111. A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. van der Zant, N. Agrait, and G. Rubio-Bollinger, Elastic properties of freely suspended MoS2 nanosheets, Adv. Mater. 24(6), 772 (2012)

    Article  Google Scholar 

  112. J. K. Norskov, F. Abild-Pedersen, F. Studt, and T. Bligaard, Density functional theory in surface chemistry and catalysis, Proc. Natl. Acad. Sci. USA 108(3), 937 (2011)

    Article  ADS  Google Scholar 

  113. B. Liu, Y. Jin, G. Xie, Z. Wang, H. Wen, N. Ren, and D. Xing, Simultaneous photo catalysis of SiC/Fe3O4 nanoparticles and photo-fermentation of rhodopseudomonas sp. nov. strain A7 for enhancing hydrogen production under visible light irradiation, ES Energy and Environment 1, 56 (2018)

    Google Scholar 

  114. P. Yang, H. Zhao, Y. Yang, P. Zhao, X. Zhao, and L. Yang, Fabrication of N, P-codoped Mo2C/carbon nanofibers via electrospinning as electrocatalyst for hydrogen evolution reaction, ES Materials & Manufacturing 7, 34 (2020)

    Google Scholar 

  115. N. Singh, S. Jana, G. P. Singh, and R. Dey, Graphene-supported TiO2: Study of promotion of charge carrier in photocatalytic water splitting and methylene blue dye degradation, Adv. Compos. Hybrid Mater 3, 127 (2020)

    Article  Google Scholar 

  116. Q. Yuan, R. Wang, Q. Wang, P. Sun, R. Nie, and X. Wang, Ultrathin MoSe2 nanosheets coated on hollow carbon spheres as efficient hybrid catalyst for hydrogen evolution reaction, ES Mater. Manuf. 2(8), 5087 (2018)

    Google Scholar 

  117. D. Lloyd, X. Liu, N. Boddeti, L. Cantley, R. Long, M. L. Dunn, and J. S. Bunch, Adhesion, stiffness, and instability in atomically thin MoS2 bubbles, Nano Lett. 17(9), 5329 (2017)

    Article  ADS  Google Scholar 

  118. J. H. Lin, H. Zhang, X. L. Cheng, and Y. Miyamoto, Single-layer group IV-V and group V-IV–III-VI semiconductors: Structural stability, electronic structures, optical properties, and photocatalysis, Phys. Rev. B 96(3), 035438 (2017)

    Article  ADS  Google Scholar 

  119. H. R. Jappor, Electronic structure of novel GaS/GaSe heterostructures based on GaS and GaSe monolayers, Physica B 524, 109 (2017)

    Article  ADS  Google Scholar 

  120. Y. Ma, Y. Dai, M. Guo, C. Niu, and B. Huang, Graphene adhesion on MoS2 monolayer: An ab initio study, Nanoscale 3(9), 3883 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21771182 and 21501177), and the Open Project Program of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences. The authors also gratefully acknowledge the Supercomputing Center in Yantai university for providing the computing resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongjian Sa, Chenghua Sun or Zuju Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Du, W., Xiao, C. et al. Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain. Front. Phys. 15, 63502 (2020). https://doi.org/10.1007/s11467-020-0980-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-020-0980-6

Keywords

Navigation