Skip to main content

Advertisement

Log in

Graphene-supported TiO2: study of promotion of charge carrier in photocatalytic water splitting and methylene blue dye degradation

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Hydrogen from water provides safe and alternative route for sustainable energy production. The present investigation reports the photocatalytic water splitting using rGO–TiO2 which efficiently promotes the conversion of solar energy to chemical energy through charge promotion activity. The catalyst was prepared by hydrothermal decomposition process and further characterized for its structural morphology, crystal structure, and photocatalytic properties. Incorporation of GO in the hybrid material found to shrink the band gap of the samples from 3.12 to 2.99 eV. Further, promotion of charge separation is confirmed from the quenching of the emission spectra of the material. The hybrid material with proportionate increment in GO content enhances the H2 production up to five times higher than pristine TiO2 material. The catalytic material with 1 wt% GO loading shows decay of methylene blue (MB) dye in aqueous solution at 0.07622 mmol/min. The hybrid material (rGO–TiO2) found to inhibit recombination center of electron-hole pairs successfully, thus facilitating overall photocatalytic properties of the material for diversified applications.

Illustrations of photocatalytic process using rGO–TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 2

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    CAS  Google Scholar 

  2. Grätzel M (1983) Energy resources through photochemistry and catalysis, 1st edn. Academic Press, New York

    Google Scholar 

  3. Zhang A-Y, Wang W-Y, Chen J-J, Liu C, Li Q-X, Zhang X, Li W-W, Si Y, Yu H-Q (2018) Epitaxial facet junctions on TiO2 single crystals for efficient photocatalytic water splitting. Energy Environ Sci 11:1444–1448

    CAS  Google Scholar 

  4. Zhang Z, Xu B, Wang X (2014) Engineering nanointerfaces for nanocatalysis. Chem Soc Rev 43:7870–7886

    CAS  Google Scholar 

  5. George S, Pokhrel S, Ji Z, Henderson BL, Xia T, Li L, Zink JI, Nel AE, Mädler L (2011) Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm. J Am Chem Soc 133:11270–11278

    CAS  Google Scholar 

  6. Yang Y, Wen J, Wei J, Xiong R, Shi J, Pan C (2013) Polypyrrole-decorated Ag-TiO2 nanofibers exhibiting enhanced photocatalytic activity under visible-light illumination. ACS Appl Mater Interfaces 5:6201–6207

    CAS  Google Scholar 

  7. Sahoo R, Roy A, Ray C, Mondal C, Negishi Y, Yusuf SM, Pal A, Pal T (2014) Decoration of Fe3O4 base material with Pd loaded CdS nanoparticle for superior photocatalytic efficiency. J Phys Chem C 118:11485–11494

    CAS  Google Scholar 

  8. Chen Z, Xu Y-J (2013) Ultrathin TiO2 layer-coated CdS spheres core-shell nanocomposite with enhanced visible-light photoactivity. ACS Appl Mater Interfaces 5:13353–13363

    CAS  Google Scholar 

  9. Ranjeesh KC, George L, Wakchaure VC, Goudappagouda G, Devi RN, Santhosh Babu S (2019) A squaraine-linked metalloporphyrin two-dimensional polymer photocatalyst for hydrogen and oxygen evolution reactions. Chem Commun 55:1627–1630

    CAS  Google Scholar 

  10. Wang Z, Li C, Domen K (2019) Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem Soc Rev 48:2109–2125

    CAS  Google Scholar 

  11. Lin Y, Li D, Hu J, Xiao G, Wang J, Li W, Fu X (2012) Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite. J Phys Chem C 116:5764–5752

    CAS  Google Scholar 

  12. Wu H, Tseng PY, Hsieh PY, Chou HT, Tai NH (2015) High mobility of graphene-based flexible transparent field effect transistors doped with TiO2 and nitrogen-doped TiO2. ACS Appl Mater Interfaces 7:9453–9461

    CAS  Google Scholar 

  13. Mao J, Ge M, Huang J, Lai Y, Lin C, Zhang K, Meng K, Tang Y (2017) Constructing multifunctional MOF@rGO hydro-/aerogels by the self-assembly process for customized water remediation. J Mater Chem A 5:11873–11881

    CAS  Google Scholar 

  14. Li H, Wu Y, Li C, Gong Y, Niu L, Liu X, Jiang Q, Sun C, Xu S (2019) Design of Pt/t-ZrO2/g-C3N4 efficient photocatalyst for the hydrogen evolution reaction. Appl Catal B Environ 251:305–312

    CAS  Google Scholar 

  15. Bera R, Kundu S, Patra A (2015) 2D hybrid nanostructure of reduced graphene oxide–CdS nanosheet for enhanced photocatalysis. ACS Appl Mater Interfaces 7:13251–13259

    CAS  Google Scholar 

  16. Akhavan O (2010) Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4:4174–4180

    CAS  Google Scholar 

  17. Pu YC, Wang G, Chang KD, Ling Y, Lin YK, Fitzmorris BC, Liu CM, Lu X, Tong Y, Zhang JZ, Hsu YJ, Li Y (2013) Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett 13:3817–3823

    CAS  Google Scholar 

  18. Inturi SNR, Suidan M, Smirniotis PG (2016) Influence of synthesis method on leaching of the Cr-TiO2 catalyst for visible light liquid phase photocatalysis and their stability. Appl Catalysis B: Environ 180:351–361

    CAS  Google Scholar 

  19. Hao R, Wang G, Tang H, Sun L, Xu C, Han D (2016) Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl Catal B Environ 187:47–58

    CAS  Google Scholar 

  20. Tang Y, Jiang Z, Tay Q, Deng J, Lai Y, Gong D, Dong Z, Chen Z (2012) Visible-light plasmonic photocatalyst anchored on titanate nanotubes: a novel nanohybrid with synergistic effects of adsorption and degradation. RSC Adv 2:9406–9414

    CAS  Google Scholar 

  21. Wang J, Tafen DN, Lewis JP, Hong Z, Manivannan A, Zhi M, Li M, Wu N (2009) Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J Am Chem Soc 131:12290–12297

    CAS  Google Scholar 

  22. Dunnill CW, Parkin IP (2011) Nitrogen-doped TiO2 thin films: photocatalytic applications for healthcare environments. Dalton Trans 40:1635–1640

    CAS  Google Scholar 

  23. Chen XB, Shen SH, Guo LJ, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    CAS  Google Scholar 

  24. Liu XJ, Zeng P, Peng TY, Zhang CH, Deng KJ (2012) Preparation of multi-walled carbon nanotubes/Cd0.8Zn0.2S nanocomposite and its photocatalytic hydrogen production under visible-light. Int J Hydrog Energy 37:1375–1384

    CAS  Google Scholar 

  25. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    CAS  Google Scholar 

  26. Schneider J, Bahnemann DW (2013) Undesired role of sacrificial reagents in photocatalysis. J Phys Chem Lett 4:3479–3483

    CAS  Google Scholar 

  27. Fang J, Xu L, Zhang Z, Yuan Y, Cao S, Wang Z, Yin L, Liao Y, Xue C (2013) Au@TiO2-CdS ternary nanostructures for efficient visible-light-driven hydrogen generation. ACS Appl Mater Interfaces 5:8088–8092

    CAS  Google Scholar 

  28. William S, Jr H, Richard E, Offeman J (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Google Scholar 

  29. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite and graphene oxide. Carbon 49:3019–3023

    CAS  Google Scholar 

  30. Thompson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J Appl Crystallogr 20:79–83

    CAS  Google Scholar 

  31. Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye-Scherrer equation. Nat Nanotechnol 6:534–534

    CAS  Google Scholar 

  32. Aleksandrzak M, Adamski P, Kukułka W, Zielinska B, Mijowska E (2015) Effect of graphene thickness on photocatalytic activity of TiO2 – graphene nanocomposites. Applied Surface Sci 331:193–199

    CAS  Google Scholar 

  33. Ossonona BD, Bélange D (2017) Synthesis and characterization of sulfophenyl-functionalized reduced graphene oxide sheets. RSC Adv 7:27224–27234

    Google Scholar 

  34. Liu G, Yan X, Chen Z, Wang X, Wang L, Lu G-Q, Cheng H-M (2009) Synthesis of rutile–anatase core–shell structured TiO2 for photocatalysis. J Mater Chem 19:6590–6596

    CAS  Google Scholar 

  35. King AAK, Davies BR, Noorbehesht N, Newman P, Church TL, Harris AT, Razal JM, Minett AI (2016) A new RAMAN metric for the characterisation of graphene oxide and its derivatives. Sci Rep 6:19491–19496

    CAS  Google Scholar 

  36. Yu JG, Ma TT, Liu SW (2011) Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Phys Chem Chem Phys 13:3491–3501

    CAS  Google Scholar 

  37. Dutta S, Ray C, Sarkar S, Pradhan M, Negishi Y, Pal T (2013) Silver nanoparticle decorated reduced graphene oxide (rGo) nanosheet: a platform for SERS based low-level detection of uranyl ion. ACS Appl Mater Interfaces 5:8724–8732

    CAS  Google Scholar 

  38. Ma J, Wang X, Liu Y, Wu T, Liu Y, Guo Y, Li R, Sun X, Wu F, Li C, Gao J (2013) Reduction of graphene oxide with L-lysine to prepare reduced graphene oxide stabilized with polysaccharide polyelectrolyte. J Mater Chem A 1:2192–2201

    CAS  Google Scholar 

  39. Xu B, Yue S, Sui Z, Zhang X, Hou S, Cao G, Yang YG (2011) What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ Sci 4:2826–2830

    CAS  Google Scholar 

  40. Wendt S, Sprunger PT, Lira E, Madsen GKH, Li Z, Hansen JØ, Matthiesen Blekinge-Rasmussen JA, Lægsgaard E, Hammer B, Besenbacher F (2008) The role of interstitial sites in the Ti3d defect state in the band gap of titania. Science 320:1755–1759

    CAS  Google Scholar 

  41. Cheng K, Han N, Su Y, Zhang J, Zhao J (2017) Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations. Sci Rep 7:41771–41777

    CAS  Google Scholar 

  42. Liu L, Qi Y, Lu J, Lin S, An W, Liang Y, Cui W (2016) A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation. Appl Cata B: Environ 183:133–141

    CAS  Google Scholar 

  43. Zhu Y, Wang Y, Ling Q, Zhu Y (2017) Enhancement of full-spectrum photocatalytic activity over BiPO4/Bi2WO6 composites. Appl Catal B Environ 200:222–229

    CAS  Google Scholar 

  44. Rauf MA, Meetani MA, Khaleel A, Ahmed A (2010) Photocatalytic degradation of methylene blue using a mixed catalyst and product analysis by LC/MS. Chem Eng J 157:373–378

    CAS  Google Scholar 

  45. Aarthi T, Madras G (2007) Photocatalytic degradation of rhodamine dyes with nano-TiO2. Industrial & Engineering Chemistry Res 46:7–14

    CAS  Google Scholar 

  46. Chen Y, Huang W, He D, Situ Y, Huang H (2014) Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Appl Mater Interfaces 6:14405–14414

    CAS  Google Scholar 

  47. Chen X, Li L, Zhang W, Li Y, Song Q, Dong L (2016) Fabricate globular flower-like CuS/CdIn2S4/ZnIn2S4 with high visible light response via microwave-assisted one–step method and its multipathway photoelectron migration properties for hydrogen evolution and pollutant degradation. ACS Sustain Chem Eng 4:6680–6688

    CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the Central Instrumentation Facilities (CIF) of Birla Institute of Technology, Mesra, Ranchi.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gajendra Prasad Singh or R. K. Dey.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Jana, S., Singh, G.P. et al. Graphene-supported TiO2: study of promotion of charge carrier in photocatalytic water splitting and methylene blue dye degradation. Adv Compos Hybrid Mater 3, 127–140 (2020). https://doi.org/10.1007/s42114-020-00140-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-020-00140-w

Keywords

Navigation