Skip to main content
Log in

Evolution of Asian drying since 30 Ma revealed by clay minerals record in the West Pacific and its tectonic-climatic forcing

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

As the second largest dust source on the globe, the tectonic and climatic evolution of continental Asia has an important impact on regional and global climate change. The West Pacific is the main sediment sink for eolian dust transported eastward from the Asian interior. Clay minerals, as the major fine-grained weathering products of continental rocks, can be readily transported by wind or currents over long distances and thus have been widely used in the reconstruction of paleoclimate and weathering history. However, the overall evolutionary tendency and response mechanism of clay mineral records over large spatial and long timescales across Asia remain unclear. Here, two continuous and high-resolution clay mineral records since 30 Ma were reconstructed from sediments at Deep Sea Drilling Program (DSDP) Sites 292 and 296 in the Philippine Sea. Clay minerals and Sr-Nd isotope compositions were used to constrain provenance and reconstruct the drying history of the dust source region since the Oligocene. The results show that the clay-sized detrital sediments in the Philippine Sea are a mixture of Asian eolian dust and volcanic materials from the West Pacific arcs. Based on the clay mineral compositions and eolian flux, we reveal that the Asian interior has been continuously drying since the late Oligocene and that stepwise enhanced aridification occurred at approximately 20, 14, 7, and 3 Ma. Compared with other regions of the world, the relative contents of illite and chlorite increased more dramatically in Asia during the late Cenozoic, and the inconsistency became more obvious at approximately 20 Ma. Since 3 Ma, illite and chlorite have increased consistently across the globe. Combined with the Asian tectonic and climatic history, we suggest that the increase in illite and chlorite from Asia between 20 and 3 Ma was mainly in response to the uplift of the Himalayan-Tibetan Plateau, whereas after 3 Ma, it was primarily controlled by global cooling driven by the expansion of the Arctic ice sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An Z S, Huang Y S, Liu W G, Zhang Q L, Cao Y N, Qiang X K, Chang H, Wu Z K, Guo Z T, Clemens S, Li L, Prell W, Ning Y F, Cai Y J, Zhou W J, Lin B H. 2005. Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation. Geology, 33: 705

    Google Scholar 

  • An Z S, Kutzbach J E, Prell W L, Porter S C. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 411: 62–66

    Article  Google Scholar 

  • Arnold E, Leinen M, King J. 1995. Paleoenvironmental variation based on the mineralogy and rock-magnetic properties of sediment from Sites 885 and 886. In: Rea D K, Basov La, Scholl D W, Allan J F, eds. Proceedings of the Ocean Drilling Program. 231–245

  • Asahara Y, Tanaka T, Kamioka H, Nishimura A, Yamazaki T. 1999. Provenance of the north Pacific sediments and process of source material transport as derived from Rb-Sr isotopic systematics. Chem Geol, 158: 271–291

    Article  Google Scholar 

  • Bailey I, Hole G M, Foster G L, Wilson P A, Storey C D, Trueman C N, Raymo M E. 2013. An alternative suggestion for the Pliocene onset of major northern hemisphere glaciation based on the geochemical provenance of North Atlantic Ocean ice-rafted debris. Quat Sci Rev, 75: 181–194

    Article  Google Scholar 

  • Biscaye P E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. GSA Bull, 76: 803–832

    Article  Google Scholar 

  • Biscaye P E, Grousset F E, Revel M, van der Gaast S, Zielinski G A, Vaars A, Kukla G. 1997. Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland. J Geophys Res, 102: 26765–26781

    Article  Google Scholar 

  • Botsyun S, Sepulchre P, Donnadieu Y, Risi C, Licht A, Caves Rugenstein J K. 2019. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene. Science, 363: eaaq1436

    Article  Google Scholar 

  • Cao K, Wang G C, Bernet M, van der Beek P, Zhang K X. 2015. Exhumation history of the West Kunlun Mountains, northwestern Tibet: Evidence for a long-lived, rejuvenated orogen. Earth Planet Sci Lett, 432: 391–403

    Article  Google Scholar 

  • Chamley H. 1989. Clay Sedimentology. Berlin, Heidelberg: Springer Berlin Heidelberg. 623

    Book  Google Scholar 

  • Chen J, Li G, Yang J, Rao W, Lu H, Balsam W, Sun Y, Ji J. 2007. Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust. Geochim Cosmochim Acta, 71: 3904–3914

    Article  Google Scholar 

  • Clift P, Lee J I, Clark M K, Blusztajn J. 2002. Erosional response of South China to arc rifting and monsoonal strengthening; a record from the South China Sea. Mar Geol, 184: 207–226

    Article  Google Scholar 

  • Clift P D, Wan S, Blusztajn J. 2014. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: A review of competing proxies. Earth-Sci Rev, 130: 86–102

    Article  Google Scholar 

  • Colin C, Turpin L, Blamart D, Frank N, Kissel C, Duchamp S. 2006. Evolution of weathering patterns in the Indo-Burman Ranges over the last 280 kyr: Effects of sediment provenance on 87Sr/86Sr ratios tracer. Geochem Geophys Geosyst, 7: Q03007

    Article  Google Scholar 

  • De Grave J, Buslov M M, Van den Haute P. 2007. Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: Constraints from apatite fission-track thermochronology. J Asian Earth Sci, 29: 188–204

    Article  Google Scholar 

  • De Grave J, Glorie S, Ryabinin A, Zhimulev F, Buslov M M, Izmer A, Elburg M, Vanhaecke F, Van den Haute P. 2012. Late Palaeozoic and Meso-Cenozoic tectonic evolution of the southern Kyrgyz Tien Shan: Constraints from multi-method thermochronology in the Trans-Alai, Turkestan-Alai segment and the southeastern Ferghana Basin. J Asian Earth Sci, 44: 149–168

    Article  Google Scholar 

  • Deconinck J F, Vanderaveroet P. 1996. Eocene to Pleistocene clay mineral sedimentation off New Jersey, Western North Atlantic (Sites 903 and 905). Ocean Drilling Program, 150: 147–170

    Google Scholar 

  • Diekmann B, Fälker M, Kuhn G. 2003. Environmental history of the southeastern South Atlantic since the Middle Miocene: Evidence from the sedimentological records of ODP Sites 1088 and 1092. Sedimentology, 50: 511–529

    Article  Google Scholar 

  • Ding L, Kapp P, Cai F, Garzione C N, Xiong Z, Wang H, Wang C. 2022. Timing and mechanisms of Tibetan Plateau uplift. Nat Rev Earth Environ, 3: 652–667

    Article  Google Scholar 

  • Ding L, Spicer R A, Yang J, Xu Q, Cai F, Li S, Lai Q, Wang H, Spicer T E V, Yue Y, Shukla A, Srivastava G, Khan M A, Bera S, Mehrotra R. 2017. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 45: 215–218

    Article  Google Scholar 

  • Dobretsov N L, Buslov M M, Vasilevsky A N, Vetrov E V, Nevedrova N N. 2016. Cenozoic history of topography in southeastern Gorny Altai: Thermochronology and resistivity and gravity records. Russ Geol Geophys, 57: 1525–1534

    Article  Google Scholar 

  • Dong D, Zhang Z, Zhang G, Bai Y, Fan J. 2017. Tectonic and sedimentary features of the West Philippine Basin and its implication to the basin evolution—Evidence from a seismic transection (in Chinese with English abstract). Oceanol Limnol Sin, 48: 1415–1425

    Google Scholar 

  • Dumitru T, Zhou D, Chang E, Graham S, Hendrix M, Sobel E, Carroll A. 2001. Uplift, exhumation, and deformation in the Chinese Tian Shan. Memoir Geol Soc Amer, 194: 71–99

    Google Scholar 

  • Duvall A R, Clark M K, Kirby E, Farley K A, Craddock W H, Li C, Yuan D Y. 2013. Low-temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during late-stage orogenesis. Tectonics, 32: 1190–1211

    Article  Google Scholar 

  • Ehrmann W. 1998. Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Palaeogeogr Palaeoclimatol Palaeoecol, 139: 213–231

    Article  Google Scholar 

  • Fang X, Dupont-Nivet G, Wang C, Song C, Meng Q, Zhang W, Nie J, Zhang T, Mao Z, Chen Y. 2020. Revised chronology of central Tibet uplift (Lunpola Basin). Sci Adv, 6: eaba7298

    Article  Google Scholar 

  • Fang X, Li M, Wang Z, Wang J, Li J, Liu X, Zan J. 2016. Oscillation of mineral compositions in Core SG-1b, western Qaidam Basin, NE Tibetan Plateau. Sci Rep, 6: 32848

    Article  Google Scholar 

  • Faure G. 1977. Principles of Isotope Geology. Chichester: Wiley

    Google Scholar 

  • Fu H, Jian X, Liang H, Zhang W, Shen X, Wang L. 2022. Tectonic and climatic forcing of chemical weathering intensity in the northeastern Tibetan Plateau since the middle Miocene. Catena, 208: 105785

    Article  Google Scholar 

  • Gallagher S J, Wallace M W, Li C L, Kinna B, Bye J T, Akimoto K, Torii M. 2009. Neogene history of the West Pacific Warm Pool, Kuroshio and Leeuwin currents. Paleoceanography, 24: PA1206

    Article  Google Scholar 

  • Gibbs R J. 1977. Clay mineral segregation in the marine environment. SEPM J Sediment Res, 47: 237–243

    Google Scholar 

  • Gingele F X, De Deckker P, Hillenbrand C D. 2001. Clay mineral distribution in surface sediments between Indonesia and NW Australia—Source and transport by ocean currents. Mar Geol, 179: 135–146

    Article  Google Scholar 

  • Griffin J, Goldberg E. 1963. Clay mineral distributions in the Pacific Ocean. Sea, 3: 728–741

    Google Scholar 

  • Guo Z T, Ruddiman W F, Hao Q Z, Wu H B, Qiao Y S, Zhu R X, Peng S Z, Wei J J, Yuan B Y, Liu T S. 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416: 159–163

    Article  Google Scholar 

  • Hall R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J Asian Earth Sci, 20: 353–431

    Article  Google Scholar 

  • Haraguchi S, Ishii T, Kimura J I, Ohara Y. 2003. Formation of tonalite from basaltic magma at the Komahashi-Daini Seamount, northern Kyushu-Palau Ridge in the Philippine Sea, and growth of Izu-Ogasawara (Bonin)-Mariana arc crust. Contrib Mineral Petrol, 145: 151–168

    Article  Google Scholar 

  • Hilde T W C, Lee C S. 1984. Origin and evolution of the West Philippine Basin: A new interpretation. Tectonophysics, 102: 85–104

    Article  Google Scholar 

  • Hong H, Zhang K, Li Z. 2010. Climatic and tectonic uplift evolution since ~7 Ma in Gyirong basin, southwestern Tibet Plateau: Clay mineral evidence. Int J Earth Sci-Geol Rund, 99: 1305–1315

    Article  Google Scholar 

  • Huang C Y, Yuan P B, Tsao S J. 2006. Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis. GSA Bull, 118: 274–288

    Article  Google Scholar 

  • Ingle J C, Karig D E, Bouma A H, Ellis C H, Haile N, Koizumi I, MacGregor I, Moore J C, Ujiie H, Watanabe T, White S M, Yasui M, Ling H Y. 1975. Initial Reports of the Deep Sea Drilling Project

  • Ishizuka O, Taylor R N, Yuasa M, Ohara Y. 2011. Making and breaking an island arc: A new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea. Geochem Geophys Geosyst, 12: Q05005

    Article  Google Scholar 

  • Jacobsen S B, Wasserburg G J. 1980. Sm-Nd isotopic evolution of chondrites. Earth Planet Sci Lett, 50: 139–155

    Article  Google Scholar 

  • Jian Z, Yu Y, Li B, Wang J, Zhang X, Zhou Z. 2006. Phased evolution of the south-north hydrographic gradient in the South China Sea since the middle Miocene. Palaeogeogr Palaeoclimatol Palaeoecol, 230: 251–263

    Article  Google Scholar 

  • Jiang F, Frank M, Li T, Chen T Y, Xu Z, Li A. 2013. Asian dust input in the western Philippine Sea: Evidence from radiogenic Sr and Nd isotopes. Geochem Geophys Geosyst, 14: 1538–1551

    Article  Google Scholar 

  • Jiang X D, Li Z X. 2014. Seismic reflection data support episodic and simultaneous growth of the Tibetan Plateau since 25 Myr. Nat Commun, 5: 5453

    Article  Google Scholar 

  • Karig D E, Ingle J C, Bouma A H, Ellis C H, Haile N, Koizumi I, Ling H Y, MacGregor I, Moore J C, Ujiie H, Watanabe T, White S M, Yasui M. 1975. Initial Reports of the Deep Sea Drilling Project

  • Kennett J P, Keller G, Srinivasan M S. 1985. Miocene planktonic foraminiferal biogeography and paleoceanographic development of the Indo-Pacific region. In: Kennett J P, ed. GSA MEMOIRS. The Miocene Ocean: Paleoceanography and Biogeography. Geological Society of America. 197–236

  • Kepezhinskas P, McDermott F, Defant M J, Hochstaedter A, Drummond M S, Hawkesworth C J, Koloskov A, Maury R C, Bellon H. 1997. Trace element and Sr-N-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochim Cosmochim Acta, 61: 577–600

    Article  Google Scholar 

  • Kimura J I, Stern R J, Yoshida T. 2005. Reinitiation of subduction and magmatic responses in SW Japan during Neogene time. GSA Bull, 117: 969–986

    Article  Google Scholar 

  • Kolla V, Nadler L E, Bonatti E. 1980. Clay mineral distributions in surface sediments of the Philippine Sea. Oceanol Acta, 3: 245–250

    Google Scholar 

  • Lear C H, Elderfield H, Wilson P A. 2000. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287: 269–272

    Article  Google Scholar 

  • Li C, Zheng D, Zhou R, Yu J, Wang Y, Pang J, Wang Y, Hao Y, Li Y. 2021. Late Oligocene tectonic uplift of the East Kunlun Shan: Expansion of the Northeastern Tibetan Plateau. Geophys Res Lett, 48: e91281

    Google Scholar 

  • Li G, Pettke T, Chen J. 2011. Increasing Nd isotopic ratio of Asian dust indicates progressive uplift of the north Tibetan Plateau since the middle Miocene. Geology, 39: 199–202

    Article  Google Scholar 

  • Li T, Masuzawa T, Kitagawa H. 2004. Seasonal variations in settling fluxes of major components in the oligotrophic Shikoku Basin, the western North Pacific: Coincidence of high biogenic flux with Asian dustsupply in spring. Mar Chem, 91: 187–210

    Article  Google Scholar 

  • Licht A, Pullen A, Kapp P, Abell J, Giesler N. 2016. Eolian cannibalism: Reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau. GSA Bull, 128: 944–956

    Article  Google Scholar 

  • Lin X, Zheng D, Sun J, Windley B F, Tian Z, Gong Z, Jia Y. 2015. Detrital apatite fission track evidence for provenance change in the Subei Basin and implications for the tectonic uplift of the Danghe Nan Shan (NW China) since the mid-Miocene. J Asian Earth Sci, 111: 302–311

    Article  Google Scholar 

  • Liu H, Jiang F, Zhou Y, Li A. 2016. Provenance of clay minerals in the Amami Sankaku Basin and their paleoclimate implications since late Pleistocene (in Chinese). Adv Earth Sci, 31: 286–297

    Google Scholar 

  • Liu H, Yumul G P, Dimalanta C B, Queaño K, Xia X, Peng T, Lan J, Xu Y, Yan Y, Guotana J M R, Olfindo V S. 2020. Western Northern Luzon isotopic evidence of transition from proto-south China Sea to South China Sea fossil ridge subduction. Tectonics, 39: e2019TC005639

    Article  Google Scholar 

  • Liu J, Zhang P, Lease R O, Zheng D, Wan J, Wang W, Zhang H. 2013. Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben: Insights from apatite fission track thermochronology. Tectonophysics, 584: 281–296

    Article  Google Scholar 

  • Liu Y, Song C, Meng Q, He P, Yang R, Huang R, Chen S, Wang D, Xing Z. 2020. Paleoclimate change since the Miocene inferred from clay-mineral records of the Jiuquan Basin, NW China. Palaeogeogr Palaeoclimatol Palaeoecol, 550: 109730

    Article  Google Scholar 

  • Liu Z, Colin C, Huang W, Le K P, Tong S, Chen Z, Trentesaux A. 2007. Climatic and tectonic controls on weathering in south China and Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochem Geophys Geosyst, 8: Q05005

    Article  Google Scholar 

  • Liu Z, Zhao Y, Colin C, Siringan F P, Wu Q. 2009. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments. Appl Geochem, 24: 2195–2205

    Article  Google Scholar 

  • Liu Z, Zhao Y, Colin C, Stattegger K, Wiesner M G, Huh C A, Zhang Y, Li X, Sompongchaiyakul P, You C F, Huang C Y, Liu J T, Siringan F P, Le K P, Sathiamurthy E, Hantoro W S, Liu J, Tuo S, Zhao S, Zhou S, He Z, Wang Y, Bunsomboonsakul S, Li Y. 2016. Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Sci Rev, 153: 238–273

    Article  Google Scholar 

  • Lohmann G P, Carlson J J. 1981. Oceanographic significance of Pacific late Miocene calcareous nannoplankton. Mar Micropaleontol, 6: 553–579

    Article  Google Scholar 

  • Lu H Y, Guo Z T. 2014. Evolution of the monsoon and dry climate in East Asia during late Cenozoic: A review. Sci China Earth Sci, 57: 70–79

    Article  Google Scholar 

  • Lu H, Wang X, Wang X, Chang X, Zhang H, Xu Z, Zhang W, Wei H, Zhang X, Yi S, Zhang W, Feng H, Wang Y, Wang Y, Han Z. 2019. Formation and evolution of Gobi Desert in central and eastern Asia. Earth-Sci Rev, 194: 251–263

    Article  Google Scholar 

  • Lyu H, Lu H, Wang Y, Zhang H, Wang Y, Wang K, Lai W, Liu Z, Li Y, Ji J. 2021. East Asian paleoclimate change in the Weihe Basin (central China) since the middle Eocene revealed by clay mineral analysis. Sci China Earth Sci, 64: 1285–1304

    Article  Google Scholar 

  • Mahony S H, Wallace L M, Miyoshi M, Villamor P, Sparks R S J, Hasenaka T. 2011. Volcano-tectonic interactions during rapid plate-boundary evolution in the Kyushu region, SW Japan. GSA Bull, 123: 2201–2223

    Article  Google Scholar 

  • Matsui H, Horikawa K, Chiyonobu S, Itaki T, Ikehara M, Kawagata S, Wakaki-Uchimura H, Asahara Y, Seki O, Okazaki Y. 2020. Integrated Neogene biochemostratigraphy at DSDP Site 296 on the Kyushu-Palau Ridge in the western North Pacific. NOS, 53: 313–331

    Article  Google Scholar 

  • Miao Y, Fang X, Herrmann M, Wu F, Zhang Y, Liu D. 2011. Miocene pollen record of KC-1 core in the Qaidam Basin, NE Tibetan Plateau and implications for evolution of the East Asian monsoon. Palaeogeogr Palaeoclimatol Palaeoecol, 299: 30–38

    Article  Google Scholar 

  • Molnar P. 2005. The growth of the Tibetan Plateau and Mio-Pliocene evolution of East Asian climate. Palaeontol Electron, 8: 1–23

    Google Scholar 

  • Moore D M, Reynolds R C. 1989. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford: Oxford University Press. 322

    Google Scholar 

  • Nie J, Pullen A, Garzione C N, Peng W, Wang Z. 2018. Pre-Quaternary decoupling between Asian aridification and high dust accumulation rates. Sci Adv, 4: eaao6977

    Article  Google Scholar 

  • Ohtsubo M, Egashira K, Kashima K. 1995. Depositional and post-depositional geochemistry, and its correlation with the geotechnical properties of marine clays in Ariake Bay, Japan. Géotechnique, 45: 509–523

    Article  Google Scholar 

  • Ohtsubo M, Egashira K, Koumoto T, Bergado D T. 2000. Mineralogy and chemistry, and their correlation with the geotechnical index properties of Bangkok clay: Comparison with Ariake clay. Soils Found, 40: 11–21

    Article  Google Scholar 

  • Pang J, Yu J, Zheng D, Wang W, Ma Y, Wang Y, Li C, Li Y, Wang Y. 2019. Neogene expansion of the Qilian Shan, North Tibet: Implications for the dynamic evolution of the Tibetan Plateau. Tectonics, 38: 1018–1032

    Article  Google Scholar 

  • Pettke T, Halliday A N, Rea D K. 2002. Cenozoic evolution of Asian climate and sources of Pacific seawater Pb and Nd derived from eolian dust of sediment core LL44-GPC3. Paleoceanography, 17: 3-1–3-13

    Article  Google Scholar 

  • Qin Y, Chen L, Shi X. 1995. Research of eolian sediment in the West Philippine Sea (in Chinese). Sci Bull, 40: 1595–1597

    Google Scholar 

  • Ramstein G, Fluteau F, Besse J, Joussaume S. 1997. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years. Nature, 386: 788–795

    Article  Google Scholar 

  • Rea D K. 1994. The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind. Rev Geophys, 32: 159–195

    Article  Google Scholar 

  • Rea D K, Janecek T R. 1982. Late Cenozoic changes in atmospheric circulation deduced from North Pacific eolian sediments. Mar Geol, 49: 149–167

    Article  Google Scholar 

  • Rea D K, Snoeckx H, Joseph L H. 1998. Late Cenozoic Eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography, 13: 215–224

    Article  Google Scholar 

  • Saitoh Y, Ishikawa T, Tanimizu M, Murayama M, Ujiie Y, Yamamoto Y, Ujiie K, Kanamatsu T. 2015. Sr, Nd, and Pb isotope compositions of hemipelagic sediment in the Shikoku Basin: Implications for sediment transport by the Kuroshio and Philippine Sea plate motion in the late Cenozoic. Earth Planet Sci Lett, 421: 47–57

    Article  Google Scholar 

  • Seo I, Lee Y I, Yoo C M, Kim H J, Hyeong K. 2014. Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr: Implications for the transport mechanism of Asian dust. J Geophys Res-Atmos, 119: 11,492–11,504

    Article  Google Scholar 

  • Shao Y, Wyrwoll K H, Chappell A, Huang J, Lin Z, McTainsh G H, Mikami M, Tanaka T Y, Wang X, Yoon S. 2011. Dust cycle: An emerging core theme in Earth system science. Aeolian Res, 2: 181–204

    Article  Google Scholar 

  • Shen X, Wan S, France-Lanord C, Clift P D, Tada R, Révillon S, Shi X, Zhao D, Liu Y, Yin X, Song Z, Li A. 2017. History of Asian eolian input to the Sea of Japan since 15 Ma: Links to Tibetan uplift or global cooling? Earth Planet Sci Lett, 474: 296–308

    Article  Google Scholar 

  • Shi Y, Dai X, Li J, Wang J. 1997. Clay minerals in the loess record in Lanzhou during the last interglacial and its implications of environment (in Chinese). Mar Geol Quat Geol, 17: 88–95

    Google Scholar 

  • Song E, Zhang K, Chen J, Wang C, Jiang G, Yin K, Hong H, Churchman J G. 2014. Clay mineralogy and its paleoclimatic significance of the Oligocene-Miocene sediments in the Gerze Basin, Tibet. Acta Geol Sin-Engl Ed, 88: 1579–1591

    Article  Google Scholar 

  • Song Z, Wan S, Colin C, Yu Z, Révillon S, Jin H, Zhang J, Zhao D, Shi X, Li A. 2021. Paleoenvironmental evolution of South Asia and its link to Himalayan uplift and climatic change since the late Eocene. Glob Planet Change, 200: 103459

    Article  Google Scholar 

  • Spicer R A, Su T, Valdes P J, Farnsworth A, Wu F X, Shi G, Spicer T E V, Zhou Z. 2021. Why ‘the uplift of the Tibetan Plateau’ is a myth. Natl Sci Rev, 8: nwaa091

    Article  Google Scholar 

  • Su T, Farnsworth A, Spicer R A, Huang J, Wu F X, Liu J, Li S F, Xing Y W, Huang Y J, Deng W Y D, Tang H, Xu C L, Zhao F, Srivastava G, Valdes P J, Deng T, Zhou Z K. 2019. No high Tibetan Plateau until the Neogene. Sci Adv, 5: eaav2189

    Article  Google Scholar 

  • Sun J. 2002. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth Planet Sci Lett, 203: 845–859

    Article  Google Scholar 

  • Sun J. 2005. Nd and Sr isotopic variations in Chinese eolian deposits during the past 8 Ma: Implications for provenance change. Earth Planet Sci Lett, 240: 454–466

    Article  Google Scholar 

  • Sun J, Ding Z, Xiao W, Windley B F. 2022. Coupling between uplift of the Central Asian Orogenic Belt-NE Tibetan Plateau and accumulation of aeolian Red Clay in the inner Asia began at ∼7 Ma. Earth-Sci Rev, 226: 103919

    Article  Google Scholar 

  • Sun J, Talebian M, Jin C, Liu W, Zhang Z, Cao M, Windley B F, Sheykh M, Shahbazi R, Tian S. 2021. Timing and forcing mechanism of the final Neotethys seawater retreat from Central Iran in response to the Arabia-Asia collision in the late early Miocene. Glob Planet Change, 197: 103395

    Article  Google Scholar 

  • Sun J, Zhang Z. 2008. Palynological evidence for the Mid-Miocene Climatic Optimum recorded in Cenozoic sediments of the Tian Shan Range, northwestern China. Glob Planet Change, 64: 53–68

    Article  Google Scholar 

  • Sun P, Niu Y, Guo P, Ye L, Liu J, Feng Y. 2017. Elemental and Sr-Nd-Pb isotope geochemistry of the Cenozoic basalts in Southeast China: Insights into their mantle sources and melting processes. Lithos, 272–273: 16–30

    Article  Google Scholar 

  • Sun X, Wang P. 2005. How old is the Asian monsoon system?—Palaeobotanical records from China. Palaeogeogr Palaeoclimatol Palaeoecol, 222: 181–222

    Article  Google Scholar 

  • Svensson A, Biscaye P E, Grousset F E. 2000. Characterization of late glacial continental dust in the Greenland Ice Core Project ice core. J Geophys Res, 105: 4637–4656

    Article  Google Scholar 

  • Tada R, Zheng H, Clift P D. 2016. Evolution and variability of the Asian monsoon and its potential linkage with uplift of the Himalaya and Tibetan Plateau. Prog Earth Planet Sci, 3: 4

    Article  Google Scholar 

  • Tang Y, Wan S, Clift P D, Zhao D, Xu Z, Zhang J, Song Z, Jin H, Li M, Shi X, Li A. 2022. Northward shift of the Northern Hemisphere westerlies in the early to late Miocene and its links to Tibetan uplift. Geophys Res Lett, 49: e99311

    Article  Google Scholar 

  • Tang Z, Ding Z, White P D, Dong X, Ji J, Jiang H, Luo P, Wang X. 2011. Late Cenozoic central Asian drying inferred from a palynological record from the northern Tian Shan. Earth Planet Sci Lett, 302: 439–447

    Article  Google Scholar 

  • Taylor B. 1992. Rifting and the volcanic-tectonic evolution of the Izu-Bonin-Mariana Arc. In: Taylor B, Fujioka K, et al. Proc ODP Sci Results, 126: College Station, TX (Ocean Drilling Program). 627–652

  • Taylor R N, Nesbitt R W. 1998. Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu-Bonin Arc, Japan. Earth Planet Sci Lett, 164: 79–98

    Article  Google Scholar 

  • Wan S, Clift P D, Li A, Li T, Yin X. 2010. Geochemical records in the South China Sea: Implications for East Asian summer monsoon evolution over the last 20 Ma. Geol Soc Spec Publ, 342: 245–263

    Article  Google Scholar 

  • Wan S, Li A, Clift P D, Jiang H. 2006. Development of the East Asian summer monsoon: Evidence from the sediment record in the South China Sea since 8.5 Ma. Palaeogeogr Palaeoclimatol Palaeoecol, 241: 139–159

    Article  Google Scholar 

  • Wan S, Li A, Clift P D, Stuut J B W. 2007. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 561–582

    Article  Google Scholar 

  • Wan S, Sun Y, Nagashima K. 2020. Asian dust from land to sea: Processes, history and effect from modern observation to geological records. Geol Mag, 157: 701–706

    Article  Google Scholar 

  • Wan S, Xu Z. 2017. Research progress on eolian dust records in the West Pacific (in Chinese). Oceanol Limnol Sin, 48: 1208–1219

    Google Scholar 

  • Wan S, Yu Z, Clift P D, Sun H, Li A, Li T. 2012. History of Asian eolian input to the West Philippine Sea over the last one million years. Palaeogeogr Palaeoclimatol Palaeoecol, 326–328: 152–159

    Article  Google Scholar 

  • Wang J, Chang F, Li T, Sun H, Cui Y, Liu T. 2020. The evolution of the Kuroshio Current over the last 5 million years since the Pliocene: Evidence from planktonic foraminiferal faunas. Sci China Earth Sci, 63: 1714–1729

    Article  Google Scholar 

  • Wang Q, Song Y, Li Y. 2020. Clay mineralogy of the upper Miocene-Pliocene red clay from the central Chinese Loess Plateau and its paleoclimate implications. Quat Int, 552: 148–154

    Article  Google Scholar 

  • Wang W, Xu Z, Li T, Wan S, Cai M, Chen H, Sun R, Lim D. 2020. Sources and origins of eolian dust to the Philippine Sea determined by major minerals and elemental geochemistry. Geol Mag, 157: 719–728

    Article  Google Scholar 

  • Wang W, Zhang P, Garzione C N, Liu C, Zhang Z, Pang J, Wang Y, Zheng D, Zheng W, Zhang H. 2022. Pulsed rise and growth of the Tibetan Plateau to its northern margin since ca. 30 Ma. Proc Natl Acad Sci USA, 119: e2120364119

    Article  Google Scholar 

  • Wang W T, Zheng D, Li C, Wang Y, Zhang Z, Pang J, Wang Y, Yu J, Wang Y, Zheng W, Zhang H, Zhang P. 2020. Cenozoic exhumation of the Qilian Shan in the Northeastern Tibetan Plateau: Evidence from low-temperature thermochronology. Tectonics, 39: e2019TC005705

    Article  Google Scholar 

  • Wang X, Zattin M, Li J, Song C, Chen S, Yang C, Zhang S, Yang J. 2013. Cenozoic tectonic uplift history of Western Qinling: Evidence from sedimentary and fission-track data. J Earth Sci, 24: 491–505

    Article  Google Scholar 

  • Westerhold T, Marwan N, Drury A J, Liebrand D, Agnini C, Anagnostou E, Barnet J S K, Bohaty S M, De Vleeschouwer D, Florindo F, Frederichs T, Hodell D A, Holbourn A E, Kroon D, Lauretano V, Littler K, Lourens L J, Lyle M, Pälike H, Röhl U, Tian J, Wilkens R H, Wilson P A, Zachos J C. 2020. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369: 1383–1387

    Article  Google Scholar 

  • Winkler A, Wolf-Welling T, Stattegger K, Thiede J. 2002. Clay mineral sedimentation in high northern latitude deep-sea basins since the Middle Miocene (ODP Leg 151, NAAG). Int J Earth Sci, 91: 133–148

    Article  Google Scholar 

  • Woodhead J D. 1989. Geochemistry of the Mariana arc (western Pacific): Source composition and processes. Chem Geol, 76: 1–24

    Article  Google Scholar 

  • Wu H, Lu H, Wang J, Chen Y, Cui M. 2022. A new estimate of global desert area and quantity ofdust emission. Chin Sci Bull, 67: 860–871

    Google Scholar 

  • Xu J, Ben-Avraham Z, Kelty T, Yu H S. 2014. Origin of marginal basins of the NW Pacific and their plate tectonic reconstructions. Earth-Sci Rev, 130: 154–196

    Article  Google Scholar 

  • Xu Z, Li T, Clift P D, Lim D, Wan S, Chen H, Tang Z, Jiang F, Xiong Z. 2015. Quantitative estimates of Asian dust input to the western Philippine Sea in the mid-late Quaternary and its potential significance for paleoenvironment. Geochem Geophys Geosyst, 16: 3182–3196

    Article  Google Scholar 

  • Xu Z, Li T, Colin C, Clift P D, Sun R, Yu Z, Wan S, Lim D. 2018. Seasonal variations in the siliciclastic fluxes to the Western Philippine Sea and their impacts on seawater εNd values inferred from 1 year of in situ observations above Benham Rise. J Geophys Res-Oceans, 123: 6688–6702

    Article  Google Scholar 

  • Xu Z, Li T, Wan S, Nan Q, Li A, Chang F, Jiang F, Tang Z. 2012. Evolution of East Asian monsoon: Clay mineral evidence in the western Philippine Sea over the past 700 kyr. J Asian Earth Sci, 60: 188–196

    Article  Google Scholar 

  • Yang R, Yang Y, Fang X, Ruan X, Galy A, Ye C, Meng Q, Han W. 2019. Late Miocene intensified tectonic uplift and climatic aridification on the Northeastern Tibetan Plateau: Evidence from clay mineralogical and geochemical records in the Xining Basin. Geochem Geophys Geosyst, 20: 829–851

    Article  Google Scholar 

  • Yang Y, Galy A, Fang X, Yang R, Zhang W, Song B, Liu Y, Han W, Zhang W, Yang S. 2021. Neodymium isotopic constraints on Cenozoic Asian dust provenance changes linked to the exhumation history of the northern Tibetan Plateau and the Central Asian Orogenic Belt. Geochim Cosmochim Acta, 296: 38–55

    Article  Google Scholar 

  • Yang Y, Han W, Ye C, Galy A, Fang X. 2022. Trends and transitions in silicate weathering in the Asian interior (NE Tibet) since 53 Ma. Front Earth Sci, 10: 824404

    Article  Google Scholar 

  • Yu Z, Wan S, Colin C, Yan H, Bonneau L, Liu Z, Song L, Sun H, Xu Z, Jiang X, Li A, Li T. 2016. Co-evolution of monsoonal precipitation in East Asia and the tropical Pacific ENSO system since 2.36 Ma: New insights from high-resolution clay mineral records in the West Philippine Sea. Earth Planet Sci Lett, 446: 45–55

    Article  Google Scholar 

  • Yuan D Y, Ge W P, Chen Z W, Li C Y, Wang Z C, Zhang H P, Zhang P Z, Zheng D W, Zheng W J, Craddock W H, Dayem K E, Duvall A R, Hough B G, Lease R O, Champagnac J D, Burbank D W, Clark M K, Farley K A, Garzione C N, Kirby E, Molnar P, Roe G H. 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies. Tectonics, 32: 1358–1370

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686–693

    Article  Google Scholar 

  • Zhang H, Lu H, He J, Xie W, Wang H, Zhang H, Breecker D, Bird A, Stevens T, Nie J, Li G. 2022. Large-number detrital zircon U-Pb ages reveal global cooling caused the formation of the Chinese Loess Plateau during Late Miocene. Sci Adv, 8: eabq2007

    Article  Google Scholar 

  • Zhang J, Wan S, Clift P D, Huang J, Yu Z, Zhang K, Mei X, Liu J, Han Z, Nan Q, Zhao D, Li A, Chen L, Zheng H, Yang S, Li T, Zhang X. 2019. History of Yellow River and Yangtze River delivering sediment to the Yellow Sea since 3.5 Ma: Tectonic or climate forcing? Quat Sci Rev, 216: 74–88

    Article  Google Scholar 

  • Zhang T, Fang X, Song C, Appel E, Wang Y. 2014. Cenozoic tectonic deformation and uplift of the South Tian Shan: Implications from magnetostratigraphy and balanced cross-section restoration of the Kuqa depression. Tectonophysics, 628: 172–187

    Article  Google Scholar 

  • Zhang W, Chen J, Ji J, Li G. 2016. Evolving flux of Asian dust in the North Pacific Ocean since the late Oligocene. Aeolian Res, 23: 11–20

    Article  Google Scholar 

  • Zhao W, Sun Y, Balsam W, Zeng L, Lu H, Otgonbayar K, Ji J. 2015. Claysized Hf-Nd-Sr isotopic composition of Mongolian dust as a fingerprint for regional to hemispherical transport. Geophys Res Lett, 42: 5661–5669

    Article  Google Scholar 

  • Zheng D, Zhang P Z, Wan J, Yuan D, Li C, Yin G, Zhang G, Wang Z, Min W, Chen J. 2006. Rapid exhumation at ∼8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin. Earth Planet Sci Lett, 248: 198–208

    Article  Google Scholar 

  • Zheng H, Wei X, Tada R, Clift P D, Wang B, Jourdan F, Wang P, He M. 2015. Late Oligocene-early Miocene birth of the Taklimakan Desert. Proc Natl Acad Sci USA, 112: 7662–7667

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the International Ocean Discovery Program for providing the samples. We thank the two anonymous reviewers for their constructive comments. Prof. Zhimin Jian is thanked for providing the foraminiferal data of ODP Sites 1143 and 1146. This work was supported by the National Natural Science Foundation of China (Grant Nos. 42125602, 42076052), the National Key Research and Development Program of China (Grant No. 2022YFF0800503), the Strategic Priority Research Program of CAS (Grant No. XDB40010100), the Marine S&T Fund of Shandong Province for QNLM (Grant No. 2022QNLM050203), the Innovation Project of QNLM (Grant No. MGQNLM-KF202001), and the Taishan and Aoshan Talents Program (Grant No. 2017ASTCP-ES01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiming Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Wan, S., Zhao, D. et al. Evolution of Asian drying since 30 Ma revealed by clay minerals record in the West Pacific and its tectonic-climatic forcing. Sci. China Earth Sci. 66, 1365–1382 (2023). https://doi.org/10.1007/s11430-022-1075-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1075-0

Keywords

Navigation