Skip to main content
Log in

The evolution of the Kuroshio Current over the last 5 million years since the Pliocene: Evidence from planktonic foraminiferal faunas

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Meridional heat transport of the western Pacific boundary current (the Kuroshio Current) is one of the key factors in global climate change. This current is important because it controls the temperature gradient between low latitudes and the North Pacific and so significantly influences mid-latitude atmosphere-ocean interactions. Here we reconstruct changes in hydrological conditions within the mid-latitude mainstream of the Kuroshio Current based on faunal analysis of planktonic foraminifera in core DSDP 296 from the Northwest Pacific Ocean. This approach enabled us to deduce evolutionary processes within the Kuroshio Current since the Pliocene. A total of 57 species in the coarser section (>150 µim) were identified; results indicate that planktonic foraminiferal faunal evolution has mainly been characterized by three major stages, the first of which comprised mixed-layer warm-water species of Globigerinoides ruber which first appeared between 3.5 and 2.7 Ma and then gradually increased in content. Percentages of another warm-water species of G. conglobatus also gradually increased in number over this interval. Variations in warm-water species indicate a gradual rise in sea surface temperature (SST) and imply initiation of Kuroshio Current impact on the Northwest Pacific Ocean since at least 3.5 Ma. Secondly, over the period between 2.7 and 2.0 Ma, thermocline species of Globigerina calida, Neogloboquadrina humersa, Neogloboquadrina dutertrei, and Pulleniatina obliquiloculata started to appear in the section. This fauna was dominated by G. ruber as well as increasing G. conglobatus contents. These features imply a further rise in SST and its gradually enhanced influence on thermocline water, suggesting strengthening of the Kuroshio Current since 2.7 Ma. Thirdly, between 2.0 Ma and present, increasing contents of thermocline species (i.e., G. calida, N. dutertrei and P. obliquiloculata) indicate a gradual rise in seawater temperature at this depth and also imply more intensive Kuroshio Current during this period. On the basis of comparative records from cores ODP 806 and DSDP 292 from the low latitude Western Pacific, we propose that initiation of the impact of the Kuroshio Current in the Northwest Pacific and it subsequent stepwise intensifications since 3.5 Ma can be closely related to the closure and restriction of the Indonesian and Central American seaways as well as variations in the Western Pacific Warm Pool (WPWP) and equatorial Pacific region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreasen D J, Ravelo A C. 1997. Tropical pacific Ocean Thermocline depth reconstructions for the last glacial maximum. Paleoceanography, 12: 395–113

    Google Scholar 

  • Bé A. 1977. An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera. In: Ramssy A T S, ed. Oceanic Micropaleontology. London: Academic Press. 1–100

    Google Scholar 

  • Berggren W A, Kent D V, Swisher C C, Aubry M. 1995a. A revised Cenozoic geochronology an chronostratigraphy. In: Berggren W A, Kent D V, Aubry M P, Hardenbol J, eds. Geochronology Time Scales and Global Stratigraphic Correlation. SEMP Special Publication, 54: 129–212

  • Berggren W A, Hilgen F J, Langereis C G, Kent D V, Obradovich J D, Raffi I, Raymo M E, Shackleton N J. 1995b. Late Neogene chronology: New perspectives in high-resolution stratigraphy. Geol Soc Am Bull, 107: 1272–1287

    Google Scholar 

  • Blow W H. 1969. Late Middle Miocene to recent planktonic foraminiferal biostratigraphy. Leiden: Proceedings of the First International Conference on Planktonic Microfossils. 199–422

  • Cane M A, Molnar P. 2001. Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature, 411: 157–162

    Google Scholar 

  • Chaisson W P, Ravelo A C. 2000. Pliocene development of the east-west hydrographic gradient in the equatorial Pacific. Paleoceanography, 15: 497–505

    Google Scholar 

  • Chamot-Rooke N, Renard V, Le Pichon X. 1987. Magnetic anomalies in the Shikoku Basin: A new interpretation. Earth Planet Sci Lett, 83: 214–228

    Google Scholar 

  • Coates A G, Collins L S, Aubry M P, Berggren W A. 2004. The Geology of the Darien, Panama, and the late Miocene-Pliocene collision of the Panama arc with northwestern South America. Geol Soc Am Bull, 116: 1327–1344

    Google Scholar 

  • Conan S M H, Brummer G J A. 2000. Fluxes of planktic foraminifera in response to monsoonal upwelling on the Somalia Basin Margin. Deep Sea Res Part II-Top Stud Oceanogr, 47: 2207–2227

    Google Scholar 

  • DeMenocal P B. 2004. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet Sci Lett, 220: 3–24

    Google Scholar 

  • Dowsett H J, Robinson M M, Haywood A M, Hill D J, Dolan A M, Stoll D K, Chan W L, Abe-Ouchi A, Chandler M A, Rosenbloom N A, Otto-Bliesner B L, Bragg F J, Lunt D J, Foley K M, Riesselman C R. 2012. Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models. Nat Clim Change, 2: 365–371

    Google Scholar 

  • Gallagher S J, Wallace M W, Li C L, Kinna B, Bye J T, Akimoto K, Torii M. 2009. Neogene history of the West Pacific Warm Pool, Kuroshio and Leeuwin currents. Paleoceanography, 24: PA1206

    Google Scholar 

  • Gallagher S J, Kitamura A, Iryu Y, Itaki T, Koizumi I, Hoiles P W. 2015. The Pliocene to recent history of the Kuroshio and Tsushima Currents: A multi-proxy approach. Prog Earth Planet Sci, 2: 17

    Google Scholar 

  • Haug G H, Tiedemann R. 1998. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 393: 673–676

    Google Scholar 

  • Haug G H, Tiedemann R, Zahn R, Ravelo A C. 2001. Role of Panama uplift on oceanic freshwater balance. Geology, 29: 207–210

    Google Scholar 

  • Haywood A M, Ridgwell A, Lunt D J, Hill D J, Pound M J, Dowsett H J, Dolan A M, Francis J E, Williams M. 2011. Are there pre-Quaternary geological analogues for a future greenhouse warming? Proc R Soc A, 369: 933–956

    Google Scholar 

  • Hotta D, Nakamura H. 2011. On the significance of the sensible heat supply from the ocean in the maintenance of the mean baroclinicity along storm tracks. J Clim, 24: 3377–3401

    Google Scholar 

  • Ijiri A, Wang L, Oba T, Kawahata H, Huang C Y, Huang C Y. 2005. Paleoenvironmental changes in the northern area of the east china sea during the past 42000 years. Palaeogeogr Palaeoclimatol Palaeoecol, 219: 239–261

    Google Scholar 

  • Imai R, Sato T, Iryu Y. 2013. Chronological and paleoceanographic constraints of Miocene to Pliocene ‘mud sea’ in the Ryukyu Islands (southwestern Japan) based on calcareous nannofossil assemblages. Island Arc, 22: 522–537

    Google Scholar 

  • Iryu Y, Matsuda H, Machiyama H, Piller W E, Quinn T M, Mutti M. 2006. Introductory perspective on the COREF project. Isl Arc, 15: 393–406

    Google Scholar 

  • Ishizuka O, Taylor R N, Yuasa M, Ohara Y. 2011. Making and breaking an island arc: A new perspective from the Oligocene Kyushu-Palau arc, Philippine Sea. Geochem Geophys Geosyst, 12: Q05005

    Google Scholar 

  • Jian Z, Wang P, Saito Y, Wang J, Pflaumann U, Oba T, Cheng X. 2000. Holocene variability of the Kuroshio Current in the Okinawa Trough, northwestern Pacific Ocean. Earth Planet Sci Lett, 184: 305–319

    Google Scholar 

  • Jian Z, Yu Y, Li B, Wang J, Zhang X, Zhou Z. 2006. Phased evolution of the south-north hydrographic gradient in the South China Sea since the middle Miocene. Palaeogeogr Palaeoclimatol Palaeoecol, 230: 251–263

    Google Scholar 

  • Juggins S. 2003. C2 User Guide: Software for Ecological and Palaeoecological Data Analysis and Visualisation. Newcastle upon Tyne: Univ of Newcastle

    Google Scholar 

  • Karas C, Nürnberg D, Tiedemann R, Garbe-Schönberg D. 2011. Pliocene Indonesian throughflow and leeuwin current dynamics: Implications for Indian Ocean polar heat flux. Paleoceanography, 26: PA2217

    Google Scholar 

  • Karig D E. 1971. Structural history of the Mariana Island arc system. Geol Soc Am Bull, 82: 323

    Google Scholar 

  • Keller G. 1979. Late Neogene planktonic foraminiferal biostratigraphy and paleoceanography of the northwest pacific DSDP site 296. Palaeogeogr Palaeoclimatol Palaeoecol, 27: 129–154

    Google Scholar 

  • Kennett J P, Srinivasan M S. 1983. Neogene Planktonic Foraminifera: A Phylogenetic Atlas. Stroudsburg: Hutchinson Ross Publishing Company. 1–263

    Google Scholar 

  • Lebedev K V, Yaremchuk M, Mitsudera H, Nakano I, Yuan G. 2003. Monitoring the Kuroshio extension with dynamically constrained synthesis of the acoustic tomography, satellite altimeter and in situ data. J Oceanography, 59: 751–763

    Google Scholar 

  • Li B H, Jian Z M, Wang P X. 1997. Pulleniatina obliquiloculata as a paleoceanographic indicator in the southern Okinawa trough during the last 20000 years. Mar Micropaleontol, 32: 59–69

    Google Scholar 

  • Li B, Wang J, Huang B, Li Q, Jian Z, Zhao Q, Su X, Wang P. 2004. South China Sea surface water evolution over the last 12 Myr: A south-north comparison from Ocean Drilling Program Sites 1143 and 1146. Paleoceanography, 19: PA1009

    Google Scholar 

  • Li B, Jian Z, Li Q, Tian J, Wang P. 2005. Paleoceanography of the South China Sea since the middle Miocene: Evidence from planktonic foraminifera. Mar Micropaleontol, 54: 49–62

    Google Scholar 

  • Lin Y S, Wei K Y, Lin I T, Yu P S, Chiang H W, Chen C Y, Shen C C, Mii H S, Chen Y G. 2006. The Holocene Pulleniatina Minimum Event revisited: Geochemical and faunal evidence from the Okinawa Trough and upper reaches of the Kuroshio current. Mar Micropaleontol, 59: 153–170

    Google Scholar 

  • Lisiecki L E, Raymo M E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20: PA1003

    Google Scholar 

  • Locarnini R A, Mishonov A V, Antonov J I, Boyer T P, Garcia H E, Baranova O K, Zweng M M, Johnson D R. 2010. World Ocean Atlas 2009, Volume 1: Temperature. In: Levitus S, ed. NOAA Atlas NESDIS 68.U.S. Washington D C: Government Printing Office. 184

    Google Scholar 

  • Lunt D J, Foster G L, Haywood A M, Stone E J. 2008. Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. Nature, 454: 1102–1105

    Google Scholar 

  • Luo D, Diao Y, Feldstein S B. 2011. The variability of the Atlantic storm track and the North Atlantic Oscillation: A link between intraseasonal and interannual variability. J Atmos Sci, 68: 577–601

    Google Scholar 

  • McCreary J P, Yu Z. 1992. Equatorial dynamics in a model. Prog Oceanogr, 29: 61–132

    Google Scholar 

  • Ogasawara K. 2002. Responses of Japanese Cenozoic molluscs to Pacific gateway events. Revista Mexicana de Ciencias Geologicas, 19: 206–214

    Google Scholar 

  • Ogawa F, Nakamura H, Nishii K, Miyasaka T, Kuwano-Yoshida A. 2012. Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front. Geophys Res Lett, 39: L05804

    Google Scholar 

  • Qiu B. 2001. Kuroshio and Oyashio Currents, Encyclopedia of Ocean Sciences. London: Academic Press. 1413–1425

    Google Scholar 

  • Ravelo A C, Andreasen D H, Lyle M, Olivarez Lyle A, Wara M W. 2004. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature, 429: 263–267

    Google Scholar 

  • Ravelo A C, Simonne Dekens P, McCarthy M. 2006. Evidence for El Niñolike conditions during the Pliocene. GSA Today, 16: 4–11

    Google Scholar 

  • Reynolds L A, Thunell R C. 1986. Seasonal production and morphologic variation of Neogloboquadrina pachydermia (Ehrenberg) in the Northeast Pacific. Micropaleontology, 32: 1

    Google Scholar 

  • Salzmann U, Dolan A M, Haywood A M, Chan W L, Voss J, Hill D J, Abe-Ouchi A, Otto-Bliesner B, Bragg F J, Chandler M A, Contoux C, Dowsett H J, Jost A, Kamae Y, Lohmann G, Lunt D J, Pickering S J, Pound M J, Ramstein G, Rosenbloom N A, Sohl L, Stepanek C, Ueda H, Zhang Z. 2013. Challenges in quantifying Pliocene terrestrial warming revealed by data-model discord. Nat Clim Change, 3: 969–974

    Google Scholar 

  • Sautter L R, Thunell R C. 1991. Seasonal variability in the δ18O and δ13C of planktonic foraminifera from an upwelling environment: Sediment trap results from the San Pedro Basin, Southern California Bight. Paleoceanography, 6: 307–334

    Google Scholar 

  • Sarnthein M, Bartoli G, Prange M, Schmittner A, Schneider B, Weinelt M, Andersen N, Garbe-Schönberg D. 2009. Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates. Clim Past, 5: 269–283

    Google Scholar 

  • Sato K, Oda M, Chiyonobu S, Kimoto K, Domitsu H, Ingle James J C Jr. 2008. Establishment of the western Pacific warm pool during the Pliocene: Evidence from planktic foraminifera, oxygen isotopes, and Mg/Ca ratios. Palaeogeogr Palaeoclimatol Palaeoecol, 265: 140–147

    Google Scholar 

  • Schiebel R, Zeltner A, Treppke U F, Waniek J J, Bollmann J, Rixen T, Hemleben C. 2004. Distribution of diatoms, coccolithophores and planktic foraminifers along a trophic gradient during SW monsoon in the Arabian Sea. Mar Micropaleontol, 51: 345–371

    Google Scholar 

  • Schmuker B, Schiebel R. 2002. Planktic foraminifers and hydrography of the eastern and northern Caribbean Sea. Mar Micropaleontol, 46: 387–403

    Google Scholar 

  • Seno T, Maruyama S. 1984. Paleogeographic reconstruction and origin of the Philippine Sea. Tectonophysics, 102: 53–84

    Google Scholar 

  • Shuto T. 1990. Origin of a subtropical fauna in the middle latitude as exemplified by the Kakegawa fauna. Bull Mar Sci, 47: 10–22

    Google Scholar 

  • Srinivasan M S, Sinha D K. 1998. Early Pliocene closing of the Indonesian Seaway: Evidence from North-East Indian ocean and tropical Pacific deep sea cores. J Asian Earth Sci, 16: 29–44

    Google Scholar 

  • Steph S, Tiedemann R, Prange M, Groeneveld J, Nürnberg D, Reuning L, Schulz M, Haug G H. 2006. Changes in Caribbean surface hydrography during the Pliocene shoaling of the Central American Seaway. Paleoceanography, 21: Pa4221

    Google Scholar 

  • Sun L, Yang Y J, Fu Y F. 2009. Impacts of typhoons on the Kuroshio large meander: Observation evidences. Atmos Ocean Sci Lett, 2: 45–50

    Google Scholar 

  • Thompson P R, Bé A W H, Duplessy J C, Shackleton N J. 1979. Disappearance of pink-pigmented Globigerinoides ruber at 120000 yr BP in the Indian and Pacific Oceans. Nature, 280: 554–558

    Google Scholar 

  • Thompson P R. 1981. Planktonic foraminifera in the western north Pacific during the past 150000 years: Comparison of modern and fossil assemblages. Palaeogeogr Palaeoclimatol Palaeoecol, 35: 241–279

    Google Scholar 

  • Tomida S, Akazaki H, Kawano T. 2013. A janthinid gastropod from late Neogene Miyazaki group of Southwestern Japan, and a status of Hartungia. Bull Mizunami Fossil Museum, 39: 59–63

    Google Scholar 

  • Tomida S, Kitao F. 2002. Occurrence of Hartungia (Gastropoda: Janthinidae) from the Tonohama Group, Kochi Prefecture, Japan. Bull Mizunami Fossil Museum, 29: 157–160

    Google Scholar 

  • Ujiié Y, Ujiié H. 2000. Distribution and oceanographic relationships of modern planktonic foraminifera in the Ryukyu Arc region, Northwest Pacific Ocean. J Foraminiferal Res, 30: 336–360

    Google Scholar 

  • Ujiié Y, Ujiié H, Taira A, Nakamura T, Oguri K. 2003. Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21000 years: Evidence from planktonic foraminifera. Mar Micropaleontol, 49: 335–364

    Google Scholar 

  • Uyeda S, Ben-Avraham Z. 1972. Origin and development of the Philippine Sea. Nat Phys Sci, 240: 176–178

    Google Scholar 

  • Venti N L, Billups K. 2013. Surface water hydrography of the Kuroshio Extension during the Pliocene-Pleistocene climate transition. Mar Micropaleontol, 101: 106–114

    Google Scholar 

  • Wang P, Zhang J, Zhao Q. 1988. Foraminifera and Ostracoda in the Sediment of the East China Sea. Beijing: China Ocean Press. 1–51

    Google Scholar 

  • Wang L, Li T, Zhou T. 2012. Intraseasonal SST variability and air-sea interaction over the Kuroshio Extension region during boreal summer. J Clim, 25: 1619–1634

    Google Scholar 

  • Wang P, Li Q. 2009. The South China Sea-Paleoceanography and Sedimentology. Dordrecht: Springer Netherlands

    Google Scholar 

  • Wara M W, Ravelo A C, Delaney M L. 2005. Permanent El Niño-like conditions during the Pliocene warm period. Science, 309: 758–761

    Google Scholar 

  • Wijffels S E, Hall M M, Joyce T, Torres D J, Hacker P, Firing E. 1998. Multiple deep gyres of the western North Pacific: A WOCE section along 149°E. J Geophys Res, 103: 12985–13009

    Google Scholar 

  • Yamagata T, Shibao Y, Umatanit S. 1985. Interannual variability of the Kuroshio Extension and its relation to the Southern Oscillation/El Niño. J Oceanogr Soc Jpn, 41: 274–281

    Google Scholar 

  • Yamamoto K, Iryu Y, Sato T, Chiyonobu S, Sagae K, Abe E. 2006. Responses of coral reefs to increased amplitude of sea-level changes at the Mid-Pleistocene Climate Transition. Palaeogeogr Palaeoclimatol Palaeoecol, 241: 160–175

    Google Scholar 

  • Yasuda I, Yoon J H, Suginohara N. 1985. Dynamics of the Kuroshio large meander. J Oceanogr Soc Jpn, 41: 259–273

    Google Scholar 

  • Yuan Y C, Liu Y G, Su J L. 2001. Variability of the Kuroshio in the East China Sea during El-Niño to La-Niña phenomenon of 1997 and 1998. Chin J Geophys-Chin Ed, 44: 199–210

    Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686–693

    Google Scholar 

Download references

Acknowledgements

We thank the International Ocean Discovery Program (IODP) and Kochi Core Center (KCC) for providing samples. We are also grateful to Baohua Li (Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences) for guidance and assistance with the identification of planktonic foraminifera. We thank the two reviewers and scientific editors of this article for their valuable suggestions. This work was supported by the Special Project’ Global Change and Atmosphere-Ocean Interactions’ (GrantNo. GASI-GEOGE-04), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB42030100), the National Natural Science Foundation of China (Grant Nos. 41830539, 41476041, & 41876041), the Open Fund Project of the Key Laboratory of Marine Sedimentology and Environmental Geology, Ministry of Natural Resources (Grant No. MASEG201901), and the Taishan Scholar Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengming Chang or Tiegang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Chang, F., Li, T. et al. The evolution of the Kuroshio Current over the last 5 million years since the Pliocene: Evidence from planktonic foraminiferal faunas. Sci. China Earth Sci. 63, 1714–1729 (2020). https://doi.org/10.1007/s11430-019-9641-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9641-9

Keywords

Navigation