Skip to main content
Log in

Ultrasound-induced biophysical effects in controlled drug delivery

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Ultrasound is widely used in biomedical engineering and has applications in conventional diagnosis and drug delivery. Recent advances in ultrasound-induced drug delivery have been summarized previously in several reviews that have primarily focused on the fabrication of drug delivery carriers. This review discusses the mechanisms underlying ultrasound-induced drug delivery and factors affecting delivery efficiency, including the characteristics of drug delivery carriers and ultrasound parameters. Firstly, biophysical effects induced by ultrasound, namely thermal effects, cavitation effects, and acoustic radiation forces, are illustrated. Secondly, the use of these biophysical effects to enhance drug delivery by affecting drug carriers and corresponding tissues is clarified in detail. Thirdly, recent advances in ultrasound-triggered drug delivery are detailed. Safety issues and optimization strategies to improve therapeutic outcomes and reduce side effects are summarized. Finally, current progress and future directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadi, F., McLoughlin, I.V., Chauhan, S., and ter-Haar, G. (2012). Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure. Prog Biophys Mol Biol 108, 119–138.

    Article  PubMed  Google Scholar 

  • Aryal, M., Vykhodtseva, N., Zhang, Y.Z., Park, J., and McDannold, N. (2013). Multiple treatments with liposomal doxorubicin and ultrasound-induced disruption of blood-tumor and blood-brain barriers improve outcomes in a rat glioma model. J Control Release 169, 103–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bekeredjian, R., Kroll, R.D., Fein, E., Tinkov, S., Coester, C., Winter, G., Katus, H.A., and Kulaksiz, H. (2007). Ultrasound targeted microbubble destruction increases capillary permeability in hepatomas. Ultrasound Med Biol 33, 1592–1598.

    Article  PubMed  Google Scholar 

  • Bioley, G., Lassus, A., Bussat, P., Terrettaz, J., Tranquart, F., and Corthésy, B. (2012). Gas-filled microbubble-mediated delivery of antigen and the induction of immune responses. Biomaterials 33, 5935–5946.

    Article  CAS  PubMed  Google Scholar 

  • Böhmer, M.R., Chlon, C.H.T., Raju, B.I., Chin, C.T., Shevchenko, T., and Klibanov, A.L. (2010). Focused ultrasound and microbubbles for enhanced extravasation. J Control Release 148, 18–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boissenot, T., Bordat, A., Fattal, E., and Tsapis, N. (2016). Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: From theoretical considerations to practical applications. J Control Release 241, 144–163.

    Article  CAS  PubMed  Google Scholar 

  • Carpentier, A., Canney, M., Vignot, A., Reina, V., Beccaria, K., Horodyckid, C., Karachi, C., Leclercq, D., Lafon, C., Chapelon, J.Y., et al. (2016). Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci Transl Med 8, 343re2.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Liang, Y., Jiang, P., Li, F., Yu, B., and Yan, F. (2019). Lipid/PLGA hybrid microbubbles as a versatile platform for noninvasive image-guided targeted drug delivery. ACS Appl Mater Interfaces 11, 41842–41852.

    Article  CAS  PubMed  Google Scholar 

  • Ciancia, S., Cafarelli, A., Zahoranova, A., Menciassi, A., and Ricotti, L. (2020). Pulsatile drug delivery system triggered by acoustic radiation force. Front Bioeng Biotechnol 8, 317.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dasgupta, A., Liu, M., Ojha, T., Storm, G., Kiessling, F., and Lammers, T. (2016). Ultrasound-mediated drug delivery to the brain: Principles, progress and prospects. Drug Discov Today Technol 20, 41–48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dayton, P.A., Allen, J.S., and Ferrara, K.W. (2002). The magnitude of radiation force on ultrasound contrast agents. J Acoust Soc Am 112, 2183–2192.

    Article  CAS  PubMed  Google Scholar 

  • Dayton, P.A., Morgan, K.E., Klibanov, A.L., Brandenburger, G.H., and Ferrara, K.W. (1999). Optical and acoustical observations of the effects of ultrasound on contrast agents. IEEE Trans Ultrason Ferroelect Freq Contr 46, 220–232.

    Article  CAS  Google Scholar 

  • de Smet, M., Heijman, E., Langereis, S., Hijnen, N.M., and Grüll, H. (2011). Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: An in vivo proof-of-concept study. J Control Release 150, 102–110.

    Article  CAS  PubMed  Google Scholar 

  • Deng, Z., Yan, F., Jin, Q., Li, F., Wu, J., Liu, X., and Zheng, H. (2014). Reversal of multidrug resistance phenotype in human breast cancer cells using doxorubicin-liposome-microbubble complexes assisted by ultrasound. J Control Release 174, 109–116.

    Article  CAS  PubMed  Google Scholar 

  • Dewey, W.C., Diederich, C.J., and Dewhirst, M.W. (2009). Hyperthermia classic commentary: ‘Arrhenius relationships from the molecule and cell to the clinic’ by William Dewey, Int. J. Hyperthermia, 10: 457–483, 1994. Int J Hyperthermia 25, 21–24.

    Article  PubMed  Google Scholar 

  • Didenko, Y.T., McNamara William B. I., and Suslick, K.S. (2000a). Effect of noble gases on sonoluminescence temperatures during multibubble cavitation. Phys Rev Lett 84, 777–780.

    Article  CAS  PubMed  Google Scholar 

  • Didenko, Y.T., McNamara William B. I., and Suslick, K.S. (2000b). Molecular emission from single-bubble sonoluminescence. Nature 407, 877–879.

    Article  CAS  PubMed  Google Scholar 

  • Dromi, S., Frenkel, V., Luk, A., Traughber, B., Angstadt, M., Bur, M., Poff, J., Xie, J., Libutti, S.K., Li, K.C.P., et al. (2007). Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res 13, 2722–2727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duco, W., Grosso, V., Zaccari, D., and Soltermann, A.T. (2016). Generation of ROS mediated by mechanical waves (ultrasound) and its possible applications. Methods 109, 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Eisenbrey, J.R., Soulen, M.C., and Wheatley, M.A. (2010). Delivery of encapsulated doxorubicin by ultrasound-mediated size reduction of drug-loaded polymer contrast agents. IEEE Trans Biomed Eng 57, 24–28.

    Article  CAS  PubMed  Google Scholar 

  • Frenkel, V. (2008). Ultrasound mediated delivery of drugs and genes to solid tumors. Adv Drug Deliv Rev 60, 1193–1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frenkel, V., Kimmel, E., and Iger, Y. (2000). Ultrasound-induced intercellular space widening in fish epidermis. Ultrasound Med Biol 26, 473–480.

    Article  CAS  PubMed  Google Scholar 

  • Ge, G., Wu, H., Xiong, F., Zhang, Y., Guo, Z., Bian, Z., Xu, J., Gu, C., Gu, N., Chen, X., et al. (2013). The cytotoxicity evaluation of magnetic iron oxide nanoparticles on human aortic endothelial cells. Nanoscale Res Lett 8, 215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ge, H.Y., Miao, L.Y., Xiong, L.L., Yan, F., Zheng, C.S., Wang, J.R., Jia, J. W., Cui, L.G., and Chen, W. (2014). High-intensity focused ultrasound treatment of late-stage pancreatic body carcinoma: Optimal tumor depth for safe ablation. Ultrasound Med Biol 40, 947–955.

    Article  PubMed  Google Scholar 

  • Geers, B., Dewitte, H., De Smedt, S.C., and Lentacker, I. (2012). Crucial factors and emerging concepts in ultrasound-triggered drug delivery. J Control Release 164, 248–255.

    Article  CAS  PubMed  Google Scholar 

  • Geers, B., De Wever, O., Demeester, J., Bracke, M., De Smedt, S.C., and Lentacker, I. (2013). Targeted liposome-loaded microbubbles for cell-specific ultrasound-triggered drug delivery. Small 9, 4027–4035.

    Article  CAS  PubMed  Google Scholar 

  • Gray, M.D., Lyon, P.C., Mannaris, C., Folkes, L.K., Stratford, M., Campo, L., Chung, D.Y.F., Scott, S., Anderson, M., Goldin, R., et al. (2019). Focused ultrasound hyperthermia for targeted drug release from thermosensitive liposomes: results from a phase I trial. Radiology 291, 232–238.

    Article  PubMed  Google Scholar 

  • Greenleaf, W.J., Bolander, M.E., Sarkar, G., Goldring, M.B., and Greenleaf, J.F. (1998). Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound Med Biol 24, 587–595.

    Article  CAS  PubMed  Google Scholar 

  • Grüll, H., and Langereis, S. (2012). Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. J Control Release 161, 317–327.

    Article  PubMed  CAS  Google Scholar 

  • Hernot, S., and Klibanov, A.L. (2008). Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60, 1153–1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hijnen, N., Kneepkens, E., de Smet, M., Langereis, S., Heijman, E., and Grüll, H. (2017). Thermal combination therapies for local drug delivery by magnetic resonance-guided high-intensity focused ultrasound. Proc Natl Acad Sci USA 114, E4802–E4811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua, X., Liu, P., Gao, Y.H., Tan, K.B., Zhou, L.N., Liu, Z., Li, X., Zhou, S. W., and Gao, Y.J. (2010). Construction of thrombus-targeted microbubbles carrying tissue plasminogen activator and their in vitro thrombolysis efficacy: A primary research. J Thromb Thrombolysis 30, 29–35.

    Article  PubMed  Google Scholar 

  • Jain, A., Tiwari, A., Verma, A., and Jain, S.K. (2018). Ultrasound-based triggered drug delivery to tumors. Drug Deliv Transl Res 8, 150–164.

    Article  CAS  PubMed  Google Scholar 

  • Jung, S.E., Cho, S.H., Jang, J.H., and Han, J.Y. (2011). High-intensity focused ultrasound ablation in hepatic and pancreatic cancer: Complications. Abdom Imag 36, 185–195.

    Article  Google Scholar 

  • Kang, J., Wu, X., Wang, Z., Ran, H., Xu, C., Wu, J., Wang, Z., and Zhang, Y. (2010). Antitumor effect of docetaxel-loaded lipid microbubbles combined with ultrasound-targeted microbubble activation on VX2 rabbit liver tumors. J Ultrasound Med 29, 61–70.

    Article  PubMed  Google Scholar 

  • Kiesel, H., Renz, A., and Hasselbach, F. (2002). Observation of Hanbury Brown-Twiss anticorrelations for free electrons. Nature 418, 392–394.

    Article  CAS  PubMed  Google Scholar 

  • Kilroy, J.P., Klibanov, A.L., Wamhoff, B.R., and Hossack, J.A. (2012). Intravascular ultrasound catheter to enhance microbubble-based drug delivery via acoustic radiation force. IEEE Trans Ultrason Ferroelect Freq Contr 59, 2156–2166.

    Article  Google Scholar 

  • Kopechek, J.A., Carson, A.R., McTiernan, C.F., Chen, X., Hasjim, B., Lavery, L., Sen, M., Grandis, J.R., and Villanueva, F.S. (2015). Ultrasound targeted microbubble destruction-mediated delivery of a transcription factor decoy inhibits STAT3 signaling and tumor growth. Theranostics 5, 1378–1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotopoulis, S., Dimcevski, G., Helge Gilja, O., Hoem, D., and Postema, M. (2013). Treatment of human pancreatic cancer using combined ultrasound, microbubbles, and gemcitabine: A clinical case study. Med Phys 40, 072902.

    Article  PubMed  CAS  Google Scholar 

  • Kwekkeboom, R.F.J., Sluijter, J.P.G., van Middelaar, B.J., Metz, C.H., Brans, M.A., Kamp, O., Paulus, W.J., and Musters, R.J.P. (2016). Increased local delivery of antagomir therapeutics to the rodent myocardium using ultrasound and microbubbles. J Control Release 222, 18–31.

    Article  CAS  PubMed  Google Scholar 

  • Lefor, A.T., Makohon, S., and Ackerman, N.B. (1985). The effects of hyperthermia on vascular permeability in experimental liver metastasis. J Surg Oncol 28, 297–300.

    Article  CAS  PubMed  Google Scholar 

  • Lentacker, I., De Cock, I., Deckers, R., De Smedt, S.C., and Moonen, C.T. W. (2014). Understanding ultrasound induced sonoporation: Definitions and underlying mechanisms. Adv Drug Deliver Rev 72, 49–64.

    Article  CAS  Google Scholar 

  • Li, P., Zheng, Y., Ran, H., Tan, J., Lin, Y., Zhang, Q., Ren, J., and Wang, Z. (2012). Ultrasound triggered drug release from 10-hydroxy-camptothecin-loaded phospholipid microbubbles for targeted tumor therapy in mice. J Control Release 162, 349–354.

    Article  CAS  PubMed  Google Scholar 

  • Liang, X., Gao, J., Jiang, L., Luo, J., Jing, L., Li, X., Jin, Y., and Dai, Z. (2015). Nanohybrid liposomal cerasomes with good physiological stability and rapid temperature responsiveness for high intensity focused ultrasound triggered local chemotherapy of cancer. ACS Nano 9, 1280–1293.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C.Y., Lin, Y.C., Huang, C.Y., Wu, S.R., Chen, C.M., and Liu, H.L. (2020). Ultrasound-responsive neurotrophic factor-loaded microbubble-liposome complex: Preclinical investigation for Parkinson’s disease treatment. J Control Release 321, 519–528.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Chen, Y., Wang, G., Jin, Q., Sun, Z., Lv, Q., Wang, J., Yang, Y., Zhang, L., and Xie, M. (2019). Improving acute cardiac transplantation rejection therapy using ultrasound-targeted FK506-loaded microbubbles in rats. Biomater Sci 7, 3729–3740.

    Article  CAS  PubMed  Google Scholar 

  • Lum, A.F.H., Borden, M.A., Dayton, P.A., Kruse, D.E., Simon, S.I., and Ferrara, K.W. (2006). Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J Control Release 111, 128–134.

    Article  CAS  PubMed  Google Scholar 

  • Ma, X., Yao, M., Shi, J., Li, X., Gao, Y., Luo, Q., Hou, R., Liang, X., and Wang, F. (2020). High intensity focused ultrasound-responsive and ultrastable cerasomal perfluorocarbon nanodroplets for alleviating tumor multidrug resistance and epithelial-mesenchymal transition. ACS Nano 14, 15904–15918.

    Article  PubMed  CAS  Google Scholar 

  • Meijering, B.D.M., Juffermans, L.J.M., van Wamel, A., Henning, R.H., Zuhorn, I.S., Emmer, M., Versteilen, A.M.G., Paulus, W.J., van Gilst, W.H., Kooiman, K., et al. (2009). Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ Res 104, 679–687.

    Article  CAS  PubMed  Google Scholar 

  • Mozafari, M., Shimoda, M., Urbanska, A.M., and Laurent, S. (2016). Ultrasound-targeted microbubble destruction: Toward a new strategy for diabetes treatment. Drug Discov Today 21, 540–543.

    Article  CAS  PubMed  Google Scholar 

  • Mura, S., Nicolas, J., and Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12, 991–1003.

    Article  CAS  PubMed  Google Scholar 

  • Oerlemans, C., Deckers, R., Storm, G., Hennink, W.E., and Nijsen, J.F.W. (2013). Evidence for a new mechanism behind HIFU-triggered release from liposomes. J Control Release 168, 327–333.

    Article  CAS  PubMed  Google Scholar 

  • Palmeri, M.L., McAleavey, S.A., Fong, K.L., Trahey, G.E., and Nightingale, K.R. (2006). Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation. IEEE Trans Ultrason Ferroelect Freq Contr 53, 2065–2079.

    Article  Google Scholar 

  • Park, S.M., Kim, M.S., Park, S.J., Park, E.S., Choi, K.S., Kim, Y.S., and Kim, H.R. (2013). Novel temperature-triggered liposome with high stability: Formulation, in vitro evaluation, and in vivo study combined with high-intensity focused ultrasound (HIFU). J Control Release 170, 373–379.

    Article  CAS  PubMed  Google Scholar 

  • Paulides, M.M., Dobsicek Trefna, H., Curto, S., and Rodrigues, D.B. (2020). Recent technological advancements in radiofrequency- and microwave-mediated hyperthermia for enhancing drug delivery. Adv Drug Deliv Rev 163–164, 3–18.

    Article  PubMed  CAS  Google Scholar 

  • Pitt, W.G., Husseini, G.A., and Staples, B.J. (2004). Ultrasonic drug delivery—A general review. Expert Opin Drug Deliv 1, 37–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poon, R.T., and Borys, N. (2011). Lyso-thermosensitive liposomal doxorubicin: An adjuvant to increase the cure rate of radiofrequency ablation in liver cancer. Future Oncol 7, 937–945.

    Article  CAS  PubMed  Google Scholar 

  • Price, R.J., Skyba, D.M., Kaul, S., and Skalak, T.C. (1998). Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation 98, 1264–1267.

    Article  CAS  PubMed  Google Scholar 

  • Rich, M.C., Sherwood, J., Bartley, A.F., Whitsitt, Q.A., Lee, M., Willoughby, W.R., Dobrunz, L.E., Bao, Y., Lubin, F.D., and Bolding, M. (2020). Focused ultrasound blood brain barrier opening mediated delivery of MRI-visible albumin nanoclusters to the rat brain for localized drug delivery with temporal control. J Control Release 324, 172–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirsi, S.R., and Borden, M.A. (2009). Microbubble compositions, properties and biomedical applications. Bubble Sci Eng Tech 1, 3–17.

    Article  CAS  Google Scholar 

  • Snipstad, S., Sulheim, E., de Lange Davies, C., Moonen, C., Storm, G., Kiessling, F., Schmid, R., and Lammers, T. (2018). Sonopermeation to improve drug delivery to tumors: From fundamental understanding to clinical translation. Expert Opin Drug Deliv 15, 1249–1261.

    Article  CAS  PubMed  Google Scholar 

  • Song, C.W. (1984). Effect of local hyperthermia on blood flow and microenvironment: A review. Cancer Res 44, 4721s–4730s.

    CAS  PubMed  Google Scholar 

  • Song, C.W., Kang, M.S., Rhee, J.G., and Levitt, S.H. (1980). Effect of hyperthermia on vascular function in normal and neoplastic tissues. Ann NY Acad Sci 335, 35–47.

    Article  CAS  PubMed  Google Scholar 

  • Song, K.H., Fan, A.C., Brlansky, J.T., Trudeau, T., Gutierrez-Hartmann, A., Calvisi, M.L., and Borden, M.A. (2015). High efficiency molecular delivery with sequential low-energy sonoporation bursts. Theranostics 5, 1419–1427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, Y., Liu, Z., Tan, H., Hou, J., Wen, X., Yang, F., and Cheng, W. (2020). New aspects of ultrasound-mediated targeted delivery and therapy for cancer. Int J Nanomed 15, 401–418.

    Article  CAS  Google Scholar 

  • Ting, C.Y., Fan, C.H., Liu, H.L., Huang, C.Y., Hsieh, H.Y., Yen, T.C., Wei, K.C., and Yeh, C.K. (2012). Concurrent blood-brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials 33, 704–712.

    Article  CAS  PubMed  Google Scholar 

  • Tinkov, S., Coester, C., Serba, S., Geis, N.A., Katus, H.A., Winter, G., and Bekeredjian, R. (2010). New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: In-vivo characterization. J Control Release 148, 368–372.

    Article  CAS  PubMed  Google Scholar 

  • Unger, E.C., McCreery, T.P., Sweitzer, R.H., Shen, D.K., and Wu, G.L. (1998). In vitro studies of a new thrombus-specific ultrasound contrast agent. Am J Cardiol 81, 58G–61G.

    Article  CAS  PubMed  Google Scholar 

  • Wang, P., Sun, L., Sun, S., Xu, M., Zhang, L., Zhang, J., Gao, L., Chen, Q., and Liang, X. (2020). Research advances in ultrasound imaging for tumor in situ. Adv Ultrasound Diagn Ther 4, 169.

    Article  Google Scholar 

  • Wood, B.J., Poon, R.T., Locklin, J.K., Dreher, M.R., Ng, K.K., Eugeni, M., Seidel, G., Dromi, S., Neeman, Z., Kolf, M., et al. (2012). Phase I study of heat-deployed liposomal doxorubicin during radiofrequency ablation for hepatic malignancies. J Vasc Interv Rad 23, 248–255.e7.

    Article  Google Scholar 

  • Wu, S.K., Chiang, C.F., Hsu, Y.H., Lin, T.H., Liou, H.C., Fu, W.M., and Lin, W.L. (2014). Short-time focused ultrasound hyperthermia enhances liposomal doxorubicin delivery and antitumor efficacy for brain metastasis of breast cancer. Int J Nanomed 9, 4485.

    Google Scholar 

  • Xie, F., Gao, S., Wu, J., Lof, J., Radio, S., Vignon, F., Shi, W., Powers, J., Unger, E., Everbach, E.C., et al. (2013). Diagnostic ultrasound induced inertial cavitation to non-invasively restore coronary and microvascular flow in acute myocardial infarction. PLoS ONE 8, e69780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, H., Sun, Y., Wei, J., Xu, L., Tang, Y., Yang, L., Zhang, X., and Lu, Y. (2019). The effects of ultrasound-targeted microbubble destruction (UTMD) carrying IL-8 monoclonal antibody on the inflammatory responses and stability of atherosclerotic plaques. Biomed Pharmacother 118, 109161.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Mu, J., and Xing, B. (2017). Photoactivated drug delivery and bioimaging. WIREs Nanomed Nanobiotechnol 9, e1408.

    Article  CAS  Google Scholar 

  • Yudina, A., Lepetit-Coiffé, M., and Moonen, C.T.W. (2011). Evaluation of the temporal window for drug delivery following ultrasound-mediated membrane permeability enhancement. Mol Imag Biol 13, 239–249.

    Article  Google Scholar 

  • Zagar, T.M., Vujaskovic, Z., Formenti, S., Rugo, H., Muggia, F., O’Connor, B., Myerson, R., Stauffer, P., Hsu, I.C., Diederich, C., et al. (2014). Two phase I dose-escalation/pharmacokinetics studies of low temperature liposomal doxorubicin (LTLD) and mild local hyperthermia in heavily pretreated patients with local regionally recurrent breast cancer. Int J Hyperthermia 30, 285–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Sun, Z., Ren, P., You, M., Zhang, J., Fang, L., Wang, J., Chen, Y., Yan, F., Zheng, H., et al. (2017). Localized delivery of shRNA against PHD2 protects the heart from acute myocardial infarction through ultrasound-targeted cationic microbubble destruction. Theranostics 7, 51–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, W., Zhao, Y., Wang, Q., Liu, T., Sun, J., and Zhang, R. (2019). Remote light-responsive nanocarriers for controlled drug delivery: advances and perspectives. Small 15, 1903060.

    Article  CAS  Google Scholar 

  • Zhao, Y., Tavares, A.C., and Gauthier, M.A. (2016). Nano-engineered electro-responsive drug delivery systems. J Mater Chem B 4, 3019–3030.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31971169, 81822022, 81771846, 81571810), the Beijing Natural Science Foundation (7182180), National Key Research and Development Program of China (2018YFC0116003, 2016YFA0201400), Beijing Talents Foundation (2018000021223ZK48), and Peking University Third Hospital (BYSYZD2019018, jyzc2018-02, BYSY2015023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolong Liang or Huiyu Ge.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Lin, Z., Zeng, L. et al. Ultrasound-induced biophysical effects in controlled drug delivery. Sci. China Life Sci. 65, 896–908 (2022). https://doi.org/10.1007/s11427-021-1971-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-1971-x

Keywords

Navigation