Skip to main content

Advertisement

Log in

Evaluation of the Temporal Window for Drug Delivery Following Ultrasound-Mediated Membrane Permeability Enhancement

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Ultrasound-induced cavitation facilitates cellular uptake of drugs via increased membrane permeability. Here, the purpose was to evaluate the duration of enhanced membrane permeability following ultrasound treatment in cell culture.

Procedures

Optical chromophores with fluorescence intensity increasing 100–1,000-fold upon intercalation with nucleic acids served as smart agents for reporting cellular uptake. Opticell chambers with a monolayer of C6 cells were subjected to ultrasound in the presence of microbubbles followed by varying delays between 0 and 24 h before addition of Sytox Green optical contrast agent. Micro- and macroscopic fluorescence were used for qualitative and quantitative analysis.

Results

Up to 25% of viable cells showed uptake of contrast agent with a half time of 8 h, with cellular uptake persisting even at 24 h. Only cells exposed to ultrasound showed the effect.

Conclusion

The temporal window of increased membrane permeability is much longer in these studies than previously suggested. This may have important repercussions for in vivo studies in which membrane permeability may be temporally separated from drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Juillerat-Jeanneret L (2008) The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles? Drug Discov Today 13(23–24):1099–1106

    Article  PubMed  CAS  Google Scholar 

  2. Simone E, Ding BS, Muzykantov V (2009) Targeted delivery of therapeutics to endothelium. Cell Tissue Res 335(1):283–300

    Article  PubMed  CAS  Google Scholar 

  3. Hernot S, Klibanov AL (2008) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60(10):1153–1166

    Article  PubMed  CAS  Google Scholar 

  4. Deckers R, Rome C, Moonen CT (2008) The role of ultrasound and magnetic resonance in local drug delivery. J Magn Reson Imaging 27(2):400–409

    Article  PubMed  Google Scholar 

  5. Larkin JO, Casey GD, Tangney M et al (2008) Effective tumor treatment using optimized ultrasound-mediated delivery of bleomycin. Ultrasound Med Biol 34(3):406–413

    Article  PubMed  Google Scholar 

  6. Yuh EL, Shulman SG, Mehta SA et al (2005) Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: study in a murine model. Radiology 234(2):431–437

    Article  PubMed  Google Scholar 

  7. Treat LH, McDannold N, Vykhodtseva N et al (2007) Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 121(4):901–907

    Article  PubMed  CAS  Google Scholar 

  8. Unger EC, McCreery TP, Sweitzer RH et al (1998) Acoustically active lipospheres containing paclitaxel: a new therapeutic ultrasound contrast agent. Invest Radiol 33(12):886–892

    Article  PubMed  CAS  Google Scholar 

  9. Tartis MS, McCallan J, Lum AF et al (2006) Therapeutic effects of paclitaxel-containing ultrasound contrast agents. Ultrasound Med Biol 32(11):1771–1780

    Article  PubMed  Google Scholar 

  10. Rapoport NY, Kennedy AM, Shea JE et al (2009) Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 138(3):268–276

    Article  PubMed  CAS  Google Scholar 

  11. Taniyama Y, Tachibana K, Hiraoka K et al (2002) Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther 9(6):372–380

    Article  PubMed  CAS  Google Scholar 

  12. Dittmar KM, Xie J, Hunter F et al (2005) Pulsed high-intensity focused ultrasound enhances systemic administration of naked DNA in squamous cell carcinoma model: initial experience. Radiology 235(2):541–546

    Article  PubMed  Google Scholar 

  13. Rome C, Deckers R, Moonen CT (2008) The use of ultrasound in transfection and transgene expression. Handb Exp Pharmacol 185(2):225–243

    Article  PubMed  CAS  Google Scholar 

  14. Kinoshita M, Hynynen K (2005) A novel method for the intracellular delivery of siRNA using microbubble-enhanced focused ultrasound. Biochem Biophys Res Commun 335(2):393–399

    Article  PubMed  CAS  Google Scholar 

  15. Saito M, Mazda O, Takahashi KA et al (2007) Sonoporation mediated transduction of pDNA/siRNA into joint synovium in vivo. J Orthop Res 25(10):1308–1316

    Article  PubMed  CAS  Google Scholar 

  16. Mehier-Humbert S, Yan F, Frinking P et al (2007) Ultrasound-mediated gene delivery: influence of contrast agent on transfection. Bioconjug Chem 18(3):652–662

    Article  PubMed  CAS  Google Scholar 

  17. van Wamel A, Kooiman K, Harteveld M et al (2006) Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Control Release 112(2):149–155

    Article  PubMed  Google Scholar 

  18. Schlicher RK, Radhakrishna H, Tolentino TP et al (2006) Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med Biol 32(6):915–924

    Article  PubMed  Google Scholar 

  19. O’Neill BE, Vo H, Angstadt M et al (2009) Pulsed high intensity focused ultrasound mediated nanoparticle delivery: mechanisms and efficacy in murine muscle. Ultrasound Med Biol 35(3):416–424

    Article  PubMed  Google Scholar 

  20. Hancock HA, Smith LH, Cuesta J et al (2009) Investigations into pulsed high-intensity focused ultrasound-enhanced delivery: preliminary evidence for a novel mechanism. Ultrasound Med Biol 35(10):1722–1736

    Article  PubMed  Google Scholar 

  21. Hallow DM, Mahajan AD, Prausnitz MR (2007) Ultrasonically targeted delivery into endothelial and smooth muscle cells in ex vivo arteries. J Control Release 118(3):285–293

    Article  PubMed  CAS  Google Scholar 

  22. Greis C (2004) Technology overview: SonoVue (Bracco, Milan). Eur Radiol 14(Suppl 8):P11–P15

    PubMed  Google Scholar 

  23. Lepetit-Coiffé MYA, Lourenco de Oliveira P et al (2009) Correlation of ultrasound-mediated drug delivery with acoustical properties of the transducer by macroscopic fluorescence imaging. In: ISTU. Aix on Provence, France

  24. Lionetti V, Fittipaldi A, Agostini S et al (2009) Enhanced caveolae-mediated endocytosis by diagnostic ultrasound in vitro. Ultrasound Med Biol 35(1):136–143

    Article  PubMed  Google Scholar 

  25. Meijering BD, Juffermans LJ, van Wamel A et al (2009) Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ Res 104(5):679–687

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by EC-project FP7-ICT-2007-1-213706 SonoDrugs and Foundation InNaBioSanté-project ULTRAFITT. The authors thank Franck Couillaud for the discussions and Roel Deckers and Sander Allon for the preliminary experiments with Opticell and intercalating dyes. Microscopy was performed in the Bordeaux Imaging Center of the Neurosciences Institute of the University of Bordeaux II; the help of Philippe Legros and Christel Poujol is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Yudina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yudina, A., Lepetit-Coiffé, M. & Moonen, C.T.W. Evaluation of the Temporal Window for Drug Delivery Following Ultrasound-Mediated Membrane Permeability Enhancement. Mol Imaging Biol 13, 239–249 (2011). https://doi.org/10.1007/s11307-010-0346-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0346-5

Key words

Navigation