Skip to main content
Log in

Regulating atomic Fe-Rh site distance for efficient oxygen reduction reaction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Exploring the atomic interaction mechanisms of dense single-atom catalysts (SACs) is of great significance for their application in oxygen reduction reaction (ORR). However, the intrinsic mechanism of the site-distance effect on the catalytic performance has been largely ignored. Here, we demonstrate the site-distance effect of Fe-Rhx@NC catalysts in ORR theoretically and experimentally. Bader charge analysis reveals that the strong interaction between Fe and Rh atoms at a certain atomic distance (dFe-Rh) alters the catalytic electronic structure, facilitating the optimization of catalyst adsorption strength. Motivated by the theoretical calculations, we designed and synthesized the Fe-Rhx@NC catalysts through a spatial confinement strategy. The characterization results prove that the Fe-Rh2@NC has the optimal dFe-Rh, which improves its intrinsic ORR activity, providing a half wave potential of 0.91 V, higher than that of the commercial Pt/C (0.86 V). This study emphasizes the importance of determining the basic mechanism of the site-distance effect in dissimilar metal atoms catalysts, which is conducive to the design of efficient catalyst systems for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Ding T, Liu X, Tao Z, Liu T, Chen T, Zhang W, Shen X, Liu D, Wang S, Pang B, Wu D, Cao L, Wang L, Liu T, Li Y, Sheng H, Zhu M, Yao T. J Am Chem Soc, 2021, 143: 11317–11324

    Article  CAS  PubMed  Google Scholar 

  2. Wang W, Zhou T, Zhang K, Wang C, Shi X, Wang L, Liu Q, Wang Y, Jiao Q, Ma G, Ye C, Xie Y, Wu X, Chu W, Wu C. Sci China Chem, 2022, 65: 2476–2486

    Article  CAS  Google Scholar 

  3. Wang J, Hu C, Wang L, Yuan Y, Zhu K, Zhang Q, Yang L, Lu J, Bai Z. Adv Funct Mater, 2023, 33: 2304277

    Article  CAS  Google Scholar 

  4. Mehmood A, Gong M, Jaouen F, Roy A, Zitolo A, Khan A, Sougrati MT, Primbs M, Bonastre AM, Fongalland D, Drazic G, Strasser P, Kucernak A. Nat Catal, 2022, 5: 311–323

    Article  CAS  Google Scholar 

  5. Cheng N, Zhang L, Doyle-Davis K, Sun X. Electrochem Energ Rev, 2019, 2: 539–573

    Article  Google Scholar 

  6. Collman JP, Devaraj NK, Decreau RA, Yang Y, Yan YL, Ebina W, Eberspacher TA, Chidsey CED. Science, 2007, 315: 1565–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC. Nature, 2010, 465: 115–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jin Z, Li P, Meng Y, Fang Z, Xiao D, Yu G. Nat Catal, 2021, 4: 615–622

    Article  CAS  Google Scholar 

  9. Feng YC, Wang X, Yi ZY, Wang YQ, Yan HJ, Wang D. Sci China Chem, 2022, 66: 273–278

    Article  Google Scholar 

  10. Wang B, Cheng C, Jin M, He J, Zhang H, Ren W, Li J, Wang D, Li Y. Angew Chem Int Ed, 2022, 61: e202207268

    Article  CAS  Google Scholar 

  11. Gao R, Wang J, Huang ZF, Zhang R, Wang W, Pan L, Zhang J, Zhu W, Zhang X, Shi C, Lim J, Zou JJ. Nat Energy, 2021, 6: 614–623

    Article  CAS  Google Scholar 

  12. Sun Y, Tian J, Mu Z, Tian B, Zhou Q, Liu C, Liu S, Wu Q, Ding M. Sci China Chem, 2022, 65: 2290–2298

    Article  CAS  Google Scholar 

  13. Sun Z, Zhang H, Cao L, Liu X, Wu D, Shen X, Zhang X, Chen Z, Ru S, Zhu X, Xia Z, Luo Q, Xu F, Yao T. Angew Chem Int Ed, 2023, 62: e202217719

    Article  CAS  Google Scholar 

  14. Liu H, Jiang L, Sun Y, Khan J, Feng B, Xiao J, Zhang H, Xie H, Li L, Wang S, Han L. Adv Energy Mater, 2023, 13: 2301223

    Article  CAS  Google Scholar 

  15. Zhu Y, Wang X, Shi J, Gan L, Huang B, Tao L, Wang S. Sci China Chem, 2022, 65: 1445–1452

    Article  CAS  Google Scholar 

  16. Hao Q, Zhong H, Wang J, Liu K, Yan J, Ren Z, Zhou N, Zhao X, Zhang H, Liu D, Liu X, Chen L, Luo J, Zhang X. Nat Synth, 2022, 1: 719–728

    Article  Google Scholar 

  17. Zhou W, Su H, Cheng W, Li Y, Jiang J, Liu M, Yu F, Wang W, Wei S, Liu Q. Nat Commun, 2022, 13: 6414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen Y, Gao R, Ji S, Li H, Tang K, Jiang P, Hu H, Zhang Z, Hao H, Qu Q, Liang X, Chen W, Dong J, Wang D, Li Y. Angew Chem Int Ed, 2020, 60: 3212–3221

    Article  Google Scholar 

  19. Venkatesh G, Sixto-López Y, Vennila P, Mary YS, Correa-Basurto J, Mary YS, Manikandan A. J Mol Structure, 2022, 1258: 132678

    Article  CAS  Google Scholar 

  20. He C, Sun R, Fu L, Huo J, Zhao C, Li X, Song Y, Wang S. Chin Chem Lett, 2022, 33: 527–532

    Article  Google Scholar 

  21. Han A, Wang X, Tang K, Zhang Z, Ye C, Kong K, Hu H, Zheng L, Jiang P, Zhao C, Zhang Q, Wang D, Li Y. Angew Chem Int Ed, 2021, 60: 19262–19271

    Article  CAS  Google Scholar 

  22. Chen Z, Niu H, Ding J, Liu H, Chen PH, Lu YH, Lu YR, Zuo W, Han L, Guo Y, Hung SF, Zhai Y. Angew Chem Int Ed, 2021, 60: 25404–25410

    Article  CAS  Google Scholar 

  23. Dervishi E, Ji Z, Htoon H, Sykora M, Doorn SK. Nanoscale, 2019, 11: 16571–16581

    Article  CAS  PubMed  Google Scholar 

  24. Yang G, Zhu J, Yuan P, Hu Y, Qu G, Lu BA, Xue X, Yin H, Cheng W, Cheng J, Xu W, Li J, Hu J, Mu S, Zhang JN. Nat Commun, 2021, 12: 1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Han J, Meng X, Lu L, Bian J, Li Z, Sun C. Adv Funct Mater, 2019, 29: 1808872

    Article  CAS  Google Scholar 

  26. Li Z, Yu H, Zhang Y, Wu D, Bai Y, Liu S, Zhao H. Chem Commun, 2023, 59: 4535–4538

    Article  CAS  Google Scholar 

  27. Liu X, Ao C, Shen X, Wang L, Wang S, Cao L, Zhang W, Dong J, Bao J, Ding T, Zhang L, Yao T. Nano Lett, 2020, 20: 8319–8325

    Article  CAS  PubMed  Google Scholar 

  28. Yang J, Xia X, Liu J, Wang J, Hu Y. Environ Sci Technol, 2020, 54: 4820–4828

    Article  CAS  PubMed  Google Scholar 

  29. Zhou T, Shan H, Yu H, Zhong C, Ge J, Zhang N, Chu W, Yan W, Xu Q, Wu H, Wu C, Xie Y. Adv Mater, 2020, 32: 2003251

    Article  CAS  Google Scholar 

  30. Zhao D, Sun K, Cheong WC, Zheng L, Zhang C, Liu S, Cao X, Wu K, Pan Y, Zhuang Z, Hu B, Wang D, Peng Q, Chen C, Li Y. Angew Chem Int Ed, 2019, 59: 8982–8990

    Article  Google Scholar 

  31. Xu S, Kim Y, Higgins D, Yusuf M, Jaramillo TF, Prinz FB. Electrochim Acta, 2017, 255: 99–108

    Article  CAS  Google Scholar 

  32. Zhou Z, Kong Y, Tan H, Huang Q, Wang C, Pei Z, Wang H, Liu Y, Wang Y, Li S, Liao X, Yan W, Zhao S. Adv Mater, 2022, 34: 2106541

    Article  CAS  Google Scholar 

  33. Fei H, Dong J, Feng Y, Allen CS, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H, An P, Chen W, Guo Z, Lee C, Chen D, Shakir I, Liu M, Hu T, Li Y, Kirkland AI, Duan X, Huang Y. Nat Catal, 2018, 1: 63–72

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFA1600800 and 2020YFA0710203), the National Natural Science Foundation of China (12025505, 22002147, 22179125 and 12205304), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0450200), the University of China Innovation Program of Anhui Province (GXXT-2020-053), the Youth Innovation Promotion Association CAS (2015366 and 2022458), and the Fellowship of China Postdoctoral Science Foundation (2021TQ0319). We would thank NSRL, BSRF, and SSRF for the synchrotron beam time. We would thank XFNANO. We would thank the supercomputing system in the Supercomputing Center of University of Science and Technology of China for the calculations. We are grateful for the technical support from Experimental Center of Engineering and Materials Science, USTC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Ding or Tao Yao.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Chen, Y., Xu, A. et al. Regulating atomic Fe-Rh site distance for efficient oxygen reduction reaction. Sci. China Chem. 67, 1352–1359 (2024). https://doi.org/10.1007/s11426-023-1889-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1889-6

Navigation