Skip to main content
Log in

Neuron-inspired design of hierarchically porous carbon networks embedded with single-iron sites for efficient oxygen reduction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 20 September 2022

This article has been updated

Abstract

The rational structure design and active-site regulation of catalysts is crucial for high energy output. Herein, B, F co-doped Fe−N−C embedded in a flexible and free-standing hierarchical porous carbon framework (Fe-SA-FPCS) was reported. Owing to the synergism of optimized intrinsic activity, fast mass transfer and well exposed active sites, the Fe-SA-FPCS exhibits a high half-wave potential (E1/2=0.89 V vs. RHE) and small Tafel slope (66 mV dec−1). Theoretical calculations uncover that B, F co-doping could accelerate the desorption of OH* on Fe sites, which can effectively increase oxygen reduction reaction activity. As the cathode for Zn-air batteries (ZABs), Fe-SA-FPCS demonstrates a high open-circuit voltage (1.51 V), large peak power density (168.4 mW cm−2) and excellent stability. The assembled flexible solid-state ZAB exhibits excellent stability during charge and discharge cycling in the flat/bent state, and is promising for the application of portable and flexible devices. This work provides a new perspective for the fabrication of single-atom electrocatalysts with well-designed structure and excellent electrochemical energy conversion and storage capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Liu Z, Zhou Q, Zhao B, Li S, Xiong Y, Xu W. Fuel, 2020, 280: 118567

    Article  CAS  Google Scholar 

  2. Zhu Y, Gan L, Shi J, Huang G, Gao H, Tao L, Wang S. Chem Eng J, 2022, 433: 133541

    Article  CAS  Google Scholar 

  3. Cheng N, Xu P, Lu B, Liu Z. J Energy Chem, 2021, 62: 645–652

    Article  Google Scholar 

  4. Zhou Z, Kong Y, Tan H, Huang Q, Wang C, Pei Z, Wang H, Liu Y, Wang Y, Li S, Liao X, Yan W, Zhao S. Adv Mater, 2022, 34: 2106541

    Article  CAS  Google Scholar 

  5. Zhao S, Yang Y, Tang Z. Angew Chem Int Ed, 2022, 61: e202110186

    CAS  Google Scholar 

  6. Huang G, Li Y, Du S, Wu Y, Chen R, Zhang J, Cheng Y, Lu S, Tao L, Wang S. Sci China Chem, 2021, 64: 2203–2211

    Article  CAS  Google Scholar 

  7. Tang T, Ding L, Jiang Z, Hu JS, Wan LJ. Sci China Chem, 2020, 63: 1517–1542

    Article  CAS  Google Scholar 

  8. Zhang Q, Guan J. Adv Funct Mater, 2020, 30: 2000768

    Article  CAS  Google Scholar 

  9. Wu KH, Liu Y, Tan X, Liu Y, Lin Y, Huang X, Ding Y, Su BJ, Zhang B, Chen JM, Yan W, Smith SC, Gentle IR, Zhao S. Chem Catal, 2022, 2: 372–385

    Article  Google Scholar 

  10. Chen G, Liu P, Liao Z, Sun F, He Y, Zhong H, Zhang T, Zschech E, Chen M, Wu G, Zhang J, Feng X. Adv Mater, 2020, 32: 1907399

    Article  CAS  Google Scholar 

  11. Gong X, Zhu J, Li J, Gao R, Zhou Q, Zhang Z, Dou H, Zhao L, Sui X, Cai J, Zhang Y, Liu B, Hu Y, Yu A, Sun SH, Wang Z, Chen Z. Adv Funct Mater, 2021, 31: 2008085

    Article  CAS  Google Scholar 

  12. Chen Y, Li Z, Zhu Y, Sun D, Liu X, Xu L, Tang Y. Adv Mater, 2019, 31: 1806312

    Article  Google Scholar 

  13. Zhou Y, Yu Y, Ma D, Foucher AC, Xiong L, Zhang J, Stach EA, Yue Q, Kang Y. ACS Catal, 2021, 11: 74–81

    Article  CAS  Google Scholar 

  14. Zhong X, Yi W, Qu Y, Zhang L, Bai H, Zhu Y, Wan J, Chen S, Yang M, Huang L, Gu M, Pan H, Xu B. Appl Catal B-Environ, 2020, 260: 118188

    Article  CAS  Google Scholar 

  15. Yan L, Xu Z, Hu W, Ning J, Zhong Y, Hu Y. Nano Energy, 2021, 82: 105710

    Article  CAS  Google Scholar 

  16. Qiao M, Wang Y, Wang Q, Hu G, Mamat X, Zhang S, Wang S. Angew Chem Int Ed, 2020, 59: 2688–2694

    Article  CAS  Google Scholar 

  17. Zhang X, Han X, Jiang Z, Xu J, Chen L, Xue Y, Nie A, Xie Z, Kuang Q, Zheng L. Nano Energy, 2020, 71: 104547

    Article  CAS  Google Scholar 

  18. Zhou H, Yang T, Kou Z, Shen L, Zhao Y, Wang Z, Wang X, Yang Z, Du J, Xu J, Chen M, Tian L, Guo W, Wang Q, Lv H, Chen W, Hong X, Luo J, He D, Wu Y. Angew Chem Int Ed, 2020, 59: 20465–20469

    Article  CAS  Google Scholar 

  19. Zhang Z, Ni L, Liu H, Zhao ZL, Yuan XZ, Li H. Sci China Chem, 2022, 65: 611–618

    Article  CAS  Google Scholar 

  20. Chen Y, Gao R, Ji S, Li H, Tang K, Jiang P, Hu H, Zhang Z, Hao H, Qu Q, Liang X, Chen W, Dong J, Wang D, Li Y. Angew Chem Int Ed, 2021, 60: 3212–3221

    Article  CAS  Google Scholar 

  21. Shao C, Wu L, Zhang H, Jiang Q, Xu X, Wang Y, Zhuang S, Chu H, Sun L, Ye J, Li B, Wang X. Adv Funct Mater, 2021, 31: 2100833

    Article  CAS  Google Scholar 

  22. Yuan K, Lützenkirchen-Hecht D, Li L, Shuai L, Li Y, Cao R, Qiu M, Zhuang X, Leung MKH, Chen Y, Scherf U. J Am Chem Soc, 2020, 142: 2404–2412

    Article  CAS  PubMed  Google Scholar 

  23. Ma J, Li J, Wang R, Yang Y, Yin P, Mao J, Ling T, Qiao S. Mater Today Energy, 2021, 19: 100624

    Article  CAS  Google Scholar 

  24. Yang H, Wu Y, Li G, Lin Q, Hu Q, Zhang Q, Liu J, He C. J Am Chem Soc, 2019, 141: 12717–12723

    Article  CAS  PubMed  Google Scholar 

  25. Yan J, Dong K, Zhang Y, Wang X, Aboalhassan AA, Yu J, Ding B. Nat Commun, 2019, 10: 5584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang H, Wang L, Wang Q, Ye S, Sun W, Shao Y, Jiang Z, Qiao Q, Zhu Y, Song P, Li D, He L, Zhang X, Yuan J, Wu T, Ozin GA. Angew Chem Int Ed, 2018, 57: 12360–12364

    Article  CAS  Google Scholar 

  27. Zhou C, Li X, Jiang H, Ding Y, He G, Guo J, Chu Z, Yu G. Adv Funct Mater, 2021, 31: 2011249

    Article  CAS  Google Scholar 

  28. Pei Z, Yuan Z, Wang C, Zhao S, Fei J, Wei L, Chen J, Wang C, Qi R, Liu Z, Chen Y. Angew Chem Int Ed, 2020, 59: 4793–4799

    Article  CAS  Google Scholar 

  29. Zou L, Hou CC, Wang Q, Wei YS, Liu Z, Qin JS, Pang H, Xu Q. Angew Chem Int Ed, 2020, 59: 19627–19632

    Article  CAS  Google Scholar 

  30. Yan L, Xu Y, Chen P, Zhang S, Jiang H, Yang L, Wang Y, Zhang L, Shen J, Zhao X, Wang L. Adv Mater, 2020, 32: 2003313

    Article  CAS  Google Scholar 

  31. Li Z, Zhang L, Chen X, Li B, Wang H, Li Q. Electrochim Acta, 2019, 296: 8–17

    Article  CAS  Google Scholar 

  32. Fernandez-Escamilla HN, Guerrero-Sanchez J, Contreras E, Ruiz-Marizcal JM, Alonso-Nunez G, Contreras OE, Felix-Navarro RM, Romo-Herrera JM, Takeuchi N. Adv Energy Mater, 2020, 11: 2002459

    Article  Google Scholar 

  33. Matanovic I, Artyushkova K, Atanassov P. Curr Opin Electrochem, 2018, 9: 137–144

    Article  CAS  Google Scholar 

  34. Zhou Y, Tao X, Chen G, Lu R, Wang D, Chen MX, Jin E, Yang J, Liang HW, Zhao Y, Feng X, Narita A, Müllen K. Nat Commun, 2020, 11: 5892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. He Q, Meng Y, Zhang H, Zhang Y, Sun Q, Gan T, Xiao H, He X, Ji H. Sci China Chem, 2020, 63: 810–817

    Article  CAS  Google Scholar 

  36. Douka AI, Xu Y, Yang H, Zaman S, Yan Y, Liu H, Salam MA, Xia BY. Adv Mater, 2020, 32: 2002170

    Article  CAS  Google Scholar 

  37. Xiao X, Li X, Wang Z, Yan G, Guo H, Hu Q, Li L, Liu Y, Wang J. Appl Catal B-Environ, 2020, 265: 118603

    Article  CAS  Google Scholar 

  38. Zhou T, Shan H, Yu H, Zhong C, Ge J, Zhang N, Chu W, Yan W, Xu Q, Wu H, Wu C, Xie Y. Adv Mater, 2020, 32: 2003251

    Article  CAS  Google Scholar 

  39. Zhang Z, Zhao X, Xi S, Zhang L, Chen Z, Zeng Z, Huang M, Yang H, Liu B, Pennycook SJ, Chen P. Adv Energy Mater, 2020, 10: 2002896

    Article  CAS  Google Scholar 

  40. Liu J, Gong Z, Allen C, Ge W, Gong H, Liao J, Liu J, Huang K, Yan M, Liu R, He G, Dong J, Ye G, Fei H. Chem Catal, 2021, 1: 1291–1307

    Article  Google Scholar 

  41. Xiao M, Chen Y, Zhu J, Zhang H, Zhao X, Gao L, Wang X, Zhao J, Ge J, Jiang Z, Chen S, Liu C, Xing W. J Am Chem Soc, 2019, 141: 17763–17770

    Article  CAS  PubMed  Google Scholar 

  42. Ma Q, Jin H, Zhu J, Li Z, Xu H, Liu B, Zhang Z, Ma J, Mu S. Adv Sci, 2021, 8: 2102209

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2020YFA0710000), the National Natural Science Foundation of China (21825201 and U19A2017), the China Postdoctoral Science Foundation (2020M682541), the Science and Technology Innovation Program of Hunan Province, China (2020RC2020), and Changsha Municipal Natural Science Foundation (kq2007009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Tao or Shuangyin Wang.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

The online version of the original article can be found at https://doi.org/10.1007/s11426-022-1393-1

Supporting Information

11426_2022_1285_MOESM1_ESM.pdf

Neuron-Inspired Design of Hierarchically Porous Carbon Networks Embedded with Single Iron Sites for Efficient Oxygen Reduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Wang, X., Shi, J. et al. Neuron-inspired design of hierarchically porous carbon networks embedded with single-iron sites for efficient oxygen reduction. Sci. China Chem. 65, 1445–1452 (2022). https://doi.org/10.1007/s11426-022-1285-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1285-y

Navigation