Skip to main content
Log in

Copper-catalyzed C(sp)–H aryl amination enables modular synthesis of quinolines and 2-quinolinones

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Herein, we disclose a novel copper-catalyzed C(sp)–H aryl amination of terminal alkynes with anthranils, enabling the rapid generation of highly reactive secondary N-aryl ynamines for the modular synthesis of structurally diverse C2-substituted quinolines and 2-quinolinones. The in-situ formed carbonyl-ynamines are prone to tautomerize to carbonyl-ketenimines, which can efficiently react with a series of nucleophiles, including amines, alcohols, phenols, thiols, thiophenols, active-methylene compounds, and even water to produce various quinoline derivatives with the generation of H2O as a sole and green byproduct. This method also unlocks a practical route to create various quinoline-fused heterocycles and can be successfully applied to the late-stage modification of complex molecules and the concise synthesis of bioactive targets. Mechanistic studies reveal a copper-catalyzed inner-sphere nitrene transfer process by using anthranils as novel aryl nitrene precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michael JP. Nat Prod Rep, 2008, 25: 166–187

    Article  PubMed  CAS  Google Scholar 

  2. Afzal O, Kumar S, Haider MR, Ali MR, Kumar R, Jaggi M, Bawa S. Eur J Medicinal Chem, 2015, 97: 871–910

    Article  CAS  Google Scholar 

  3. Vitaku E, Smith DT, Njardarson JT. J Med Chem, 2014, 57: 10257–10274

    Article  PubMed  CAS  Google Scholar 

  4. Zhang L, Wang YF, Li M, Gao QY, Chen CF. Chin Chem Lett, 2021, 32: 740–744

    Article  CAS  Google Scholar 

  5. Ali B, Khalid M, Asim S, Usman Khan M, Iqbal Z, Hussain A, Hussain R, Ahmed S, Ali A, Hussain A, Imran M, Assiri MA, Fayyaz ur Rehman M, Wang C, Lu C. Molecules, 2021, 26: 2760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Srikanth PS, Nayak VL, Suresh Babu K, Kumar GB, Ravikumar A, Kamal A. ChemMedChem, 2016, 11: 2050–2062

    Article  PubMed  CAS  Google Scholar 

  7. Cheng Y, Judd TC, Bartberger MD, Brown J, Chen K, Fremeau Jr. RT, Hickman D, Hitchcock SA, Jordan B, Li V, Lopez P, Louie SW, Luo Y, Michelsen K, Nixey T, Powers TS, Rattan C, Sickmier EA, St. Jean Jr. DJ, Wahl RC, Wen PH, Wood S. J Med Chem, 2011, 54: 5836–5857

    Article  PubMed  CAS  Google Scholar 

  8. Mear SJ, Lucas T, Ahlqvist GP, Robey JMS, Dietz J, Khairnar PV, Maity S, Williams CL, Snead DR, Nelson RC, Opatz T, Jamison TF. Chem Eur J, 2022, 28: e202201311

    Article  PubMed  CAS  Google Scholar 

  9. Gao F, Li J, Ahmad T, Luo Y, Zhang Z, Yuan Q, Huo X, Song T, Zhang W. Sci China Chem, 2022, 65: 1968–1977

    Article  CAS  Google Scholar 

  10. Blackburn TP, Cox B, Guildford AJ, Le Count DJ, Middlemiss DN, Pearce RJ, Thornber CW. J Med Chem, 1987, 30: 2252–2259

    Article  PubMed  CAS  Google Scholar 

  11. Igoe N, Bayle ED, Fedorov O, Tallant C, Savitsky P, Rogers C, Owen DR, Deb G, Somervaille TCP, Andrews DM, Jones N, Cheasty A, Ryder H, Brennan PE, Müller S, Knapp S, Fish PV. J Med Chem, 2017, 60: 668–680

    Article  PubMed  CAS  Google Scholar 

  12. He J, Lion U, Sattler I, Gollmick FA, Grabley S, Cai J, Meiners M, Schünke H, Schaumann K, Dechert U, Krohn M. J Nat Prod, 2005, 68: 1397–1399

    Article  PubMed  CAS  Google Scholar 

  13. Joseph B, Darro F, Béhard A, Lesur B, Collignon F, Decaestecker C, Frydman A, Guillaumet G, Kiss R. J Med Chem, 2002, 45: 2543–2555

    Article  PubMed  CAS  Google Scholar 

  14. Lv W, Xiong B, Jiang H, Zhang M. Adv Synth Catal, 2017, 359: 1202–1207

    Article  CAS  Google Scholar 

  15. Wang L, Ferguson J, Zeng F. Org Biomol Chem, 2015, 13: 11486–11491

    Article  PubMed  CAS  Google Scholar 

  16. Liu B, Gao H, Yu Y, Wu W, Jiang H. J Org Chem, 2013, 78: 10319–10328

    Article  PubMed  CAS  Google Scholar 

  17. Zhao J, Peng C, Liu L, Wang Y, Zhu Q. J Org Chem, 2010, 75: 7502–7504

    Article  PubMed  CAS  Google Scholar 

  18. Hu C, Liu R, Ning Z, Mou D, Fu Y, Du Z. Org Biomol Chem, 2022, 20: 8280–8284

    Article  PubMed  CAS  Google Scholar 

  19. Li X, Pan J, Wu H, Jiao N. Chem Sci, 2017, 8: 6266–6273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhang Z, Liao LL, Yan SS, Wang L, He YQ, Ye JH, Li J, Zhi YG, Yu DG. Angew Chem Int Ed, 2016, 55: 7068–7072

    Article  CAS  Google Scholar 

  21. Zeng R, Dong G. J Am Chem Soc, 2015, 137: 1408–1411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kadnikov DV, Larock RC. J Org Chem, 2004, 69: 6772–6780

    Article  PubMed  CAS  Google Scholar 

  23. The state-of-the-art technology for the preparation of C2 heteroatom-substituted quinolines is the substitution of 2-chloroquinolines with heteroatom nucleophiles, which suffers from low atomic economy and severe environmental impact

  24. Dutta S, Mallick RK, Sahoo AK. Angew Chem Int Ed, 2023, 62: e202300816

    Article  CAS  Google Scholar 

  25. Hong FL, Ye LW. Acc Chem Res, 2020, 53: 2003–2019

    Article  PubMed  CAS  Google Scholar 

  26. Chen YB, Qian PC, Ye LW. Chem Soc Rev, 2020, 49: 8897–8909

    Article  PubMed  CAS  Google Scholar 

  27. DeKorver KA, Li H, Lohse AG, Hayashi R, Lu Z, Zhang Y, Hsung RP. Chem Rev, 2010, 110: 5064–5106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Zificsak CA, Mulder JA, Hsung RP, Rameshkumar C, Wei LL. Tetrahedron, 2001, 57: 7575–7606

    Article  CAS  Google Scholar 

  29. Zhu BH, Zhang YQ, Xu HJ, Li L, Deng GC, Qian PC, Deng C, Ye LW. ACS Catal, 2021, 11: 1706–1713

    Article  CAS  Google Scholar 

  30. Zhang YQ, Zhang YP, Zheng YX, Li ZY, Ye LW. Cell Rep Phys Sci, 2021, 2: 100448

    Article  CAS  Google Scholar 

  31. Wang ZS, Chen YB, Zhang HW, Sun Z, Zhu C, Ye LW. J Am Chem Soc, 2020, 142: 3636–3644

    Article  PubMed  CAS  Google Scholar 

  32. Wang ZS, Chen YB, Wang K, Xu Z, Ye LW. Green Chem, 2020, 22: 4483–4488

    Article  CAS  Google Scholar 

  33. Hamada T, Ye X, Stahl SS. J Am Chem Soc, 2008, 130: 833–835

    Article  PubMed  CAS  Google Scholar 

  34. Kim J, Stahl SS. J Org Chem, 2015, 80: 2448–2454

    Article  PubMed  CAS  Google Scholar 

  35. Sagadevan A, Ragupathi A, Lin CC, Hwu JR, Hwang KC. Green Chem, 2015, 17: 1113–1119

    Article  CAS  Google Scholar 

  36. Zhang C, Jiao N. J Am Chem Soc, 2010, 132: 28–29

    Article  PubMed  CAS  Google Scholar 

  37. Tang JY, Jiang HF, Deng GJ, Zhou L. J Org Chem, 2005, 25: 1503–1507

    CAS  Google Scholar 

  38. van Vliet KM, Polak LH, Siegler MA, van der Vlugt JI, Guerra CF, de Bruin B. J Am Chem Soc, 2019, 141: 15240–15249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lavernhe R, Wang Q, Zhu J. Angew Chem Int Ed, 2023, 62: e202303537

    Article  CAS  Google Scholar 

  40. Lavernhe R, Torres-Ochoa RO, Wang Q, Zhu J. Angew Chem Intl Ed, 2021, 60: 24028–24033

    Article  CAS  Google Scholar 

  41. Lei J, Sha W, Xie X, Weng WT. Org Lett, 2023, 25: 320–324

    Article  PubMed  CAS  Google Scholar 

  42. Gao Y, Nie J, Huo Y, Hu XQ. Org Chem Front, 2020, 7: 1177–1196

    Article  CAS  Google Scholar 

  43. Li J, Tan E, Keller N, Chen YH, Zehetmaier PM, Jakowetz AC, Bein T, Knochel P. J Am Chem Soc, 2019, 141: 98–103

    Article  PubMed  CAS  Google Scholar 

  44. Yu S, Tang G, Li Y, Zhou X, Lan Y, Li X. Angew Chem Int Ed, 2016, 55: 8696–8700

    Article  CAS  Google Scholar 

  45. Li L, Wang H, Yu S, Yang X, Li X. Org Lett, 2016, 18: 3662–3665

    Article  PubMed  CAS  Google Scholar 

  46. Yu S, Li Y, Zhou X, Wang H, Kong L, Li X. Org Lett, 2016, 18: 2812–2815

    Article  PubMed  CAS  Google Scholar 

  47. Wang M, Kong L, Wang F, Li X. Adv Synth Catal, 2017, 359: 4411–4416

    Article  CAS  Google Scholar 

  48. Gao Y, Yang S, She M, Nie J, Huo Y, Chen Q, Li X, Hu XQ. Chem Sci, 2022, 13: 2105–2114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Gao Y, Nie J, Li Y, Li X, Chen Q, Huo Y, Hu XQ. Org Lett, 2020, 22: 2600–2605

    Article  PubMed  CAS  Google Scholar 

  50. Jiang J, Cai X, Hu Y, Liu X, Chen X, Wang SY, Zhang Y, Zhang S. J Org Chem, 2019, 84: 2022–2031

    Article  PubMed  CAS  Google Scholar 

  51. Bahri J, Blieck R, Jamoussi B, Taillefer M, Monnier F. Chem Commun, 2015, 51: 11210–11212

    Article  CAS  Google Scholar 

  52. Wei W, Hu XY, Yan XW, Zhang Q, Cheng M, Ji JX. Chem Commun, 2012, 48: 305–307

    Article  CAS  Google Scholar 

  53. Hawkins DG, Meth-Cohn O. J Chem Soc Perkin Trans 1, 1983, 2077–2087

  54. Chen Z, Zeng W, Jiang H, Liu L. Org Lett, 2012, 14: 5385–5387

    Article  PubMed  CAS  Google Scholar 

  55. Kramer S, Odabachian Y, Overgaard J, Rottländer M, Gagosz F, Skrydstrup T. Angew Chem Int Ed, 2011, 50: 5090–5094

    Article  CAS  Google Scholar 

  56. Rebets Y, Nadmid S, Paulus C, Dahlem C, Herrmann J, Hübner H, Rückert C, Kiemer AK, Gmeiner P, Kalinowski J, Müller R, Luzhetskyy A. Angew Chem Int Ed, 2019, 58: 12930–12934

    Article  CAS  Google Scholar 

  57. Toop HD, Brusnahan JS, Morris JC. Angew Chem Int Ed, 2017, 56: 8536–8538

    Article  CAS  Google Scholar 

  58. Trofimov BA, Shemyakina OA, Mal’kina AG, Stepanov AV, Volostnykh OG, Ushakov IA, Vashchenko AV. Eur J Org Chem, 2016, 2016: 5465–5469

    Article  CAS  Google Scholar 

  59. Yu LZ, Hu XB, Xu Q, Shi M. Chem Commun, 2016, 52: 2701–2704

    Article  CAS  Google Scholar 

  60. Chen K, Tang XY, Shi M. Chem Commun, 2016, 52: 1967–1970

    Article  CAS  Google Scholar 

  61. Zhang Z, Zhang Q, Sun S, Xiong T, Liu Q. Angew Chem Int Ed, 2007, 46: 1726–1729

    Article  CAS  Google Scholar 

  62. El Sayed I, Van der Veken P, Steert K, Dhooghe L, Hostyn S, Van Baelen G, Lemière G, Maes BUW, Cos P, Maes L, Joossens J, Haemers A, Pieters L, Augustyns K. J Med Chem, 2009, 52: 2979–2988

    Article  PubMed  CAS  Google Scholar 

  63. Ali S, Li YX, Anwar S, Yang F, Chen ZS, Liang YM. J Org Chem, 2012, 77: 424–431

    Article  PubMed  CAS  Google Scholar 

  64. Davis TA, Wilt JC, Johnston JN. J Am Chem Soc, 2010, 132: 2880–2882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Nugent BM, Yoder RA, Johnston JN. J Am Chem Soc, 2004, 126: 3418–3419

    Article  PubMed  CAS  Google Scholar 

  66. Dong XY, Zhang YF, Ma CL, Gu QS, Wang FL, Li ZL, Jiang SP, Liu XY. Nat Chem, 2019, 11: 1158–1166

    Article  PubMed  CAS  Google Scholar 

  67. Zuidema E, Bolm C. Chem Eur J, 2010, 16: 4181–4185

    Article  PubMed  CAS  Google Scholar 

  68. Nomura Y, Kikuchi Y, Takeuchi Y. Chem Lett, 1974, 3: 575–576

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22271065, 22271314), and the Guangzhou Basic and Applied Research (202201010396).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Gao or Xiao-Qiang Hu.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Li, H., Yang, S. et al. Copper-catalyzed C(sp)–H aryl amination enables modular synthesis of quinolines and 2-quinolinones. Sci. China Chem. 67, 595–603 (2024). https://doi.org/10.1007/s11426-023-1739-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1739-y

Navigation