Skip to main content
Log in

Regulating the electrolyte solvation structure by weakening the solvating power of solvents for stable lithium metal batteries

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Rational electrolyte design is essential for stabilizing high-energy-density lithium (Li) metal batteries but is plagued by poor understanding on the effect of electrolyte component properties on solvation structure and interfacial chemistry. Herein, regulating the solvation structure in localized high-concentration electrolytes (LHCE) by weakening the solvating power of solvents is proposed for high-performance LHCE. 1,3-dimethoxypropane (DMP) solvent has relatively weak solvating power but maintains the high solubility of Li salts, thus impelling the formation of nanometric aggregates where an anion coordinates to more than two Li-ions (referred to AGG-n) in LHCE. The decomposition of AGG-n increases the LiF content in solid electrolyte interphase (SEI), further enabling uniform Li deposition. The cycle life of Li metal batteries with DMP-based LHCE is 2.1 times (386 cycles) as that of advanced ether-based LHCE under demanding conditions. Furthermore, a Li metal pouch cell of 462 Wh kg−1 undergoes 58 cycles with the DMP-based LHCE pioneeringly. This work inspires ingenious solvating power regulation to design high-performance electrolytes for practical Li metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu DH, Bai Z, Li M, Yu A, Luo D, Liu W, Yang L, Lu J, Amine K, Chen Z. Chem Soc Rev, 2020, 49: 5407–5445

    Article  PubMed  CAS  Google Scholar 

  2. Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang JG. Energy Environ Sci, 2014, 7: 513–537

    Article  CAS  Google Scholar 

  3. Placke T, Kloepsch R, Dühnen S, Winter M. J Solid State Electrochem, 2017, 21: 1939–1964

    Article  CAS  Google Scholar 

  4. Yuan H, Ding X, Liu T, Nai J, Wang Y, Liu Y, Liu C, Tao X. Mater Today, 2022, 53: 173–196

    Article  CAS  Google Scholar 

  5. Cao R, Chen K, Liu J, Huang G, Liu W, Zhang X. Sci China Chem, 2023, DOI:https://doi.org/10.1007/s11426-023-1581-2

  6. Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q. Adv Sci, 2016, 3: 1500213

    Article  Google Scholar 

  7. Xu K. Chem Rev, 2014, 114: 11503–11618

    Article  PubMed  CAS  Google Scholar 

  8. Shi Y, Liu GX, Wan J, Wen R, Wan LJ. Sci China Chem, 2021, 64: 734–738

    Article  CAS  Google Scholar 

  9. Peled E. J Electrochem Soc, 1979, 126: 2047–2051

    Article  CAS  Google Scholar 

  10. Cheng XB, Zhang R, Zhao CZ, Zhang Q. Chem Rev, 2017, 117: 10403–10473

    Article  PubMed  CAS  Google Scholar 

  11. Peled E, Golodnitsky D, Ardel G. J Electrochem Soc, 1997, 144: L208–L210

    Article  CAS  Google Scholar 

  12. Huang J, Li F, Wu M, Wang H, Qi S, Jiang G, Li X, Ma J. Sci China Chem, 2022, 65: 840–857

    Article  CAS  Google Scholar 

  13. Xu K. J Electrochem Soc, 2007, 154: A162

    Article  CAS  Google Scholar 

  14. Zhang XQ, Chen X, Cheng XB, Li BQ, Shen X, Yan C, Huang JQ, Zhang Q. Angew Chem Int Ed, 2018, 57: 5301–5305

    Article  CAS  Google Scholar 

  15. Ding JF, Xu R, Yan C, Li BQ, Yuan H, Huang JQ. J Energy Chem, 2021, 59: 306–319

    Article  CAS  Google Scholar 

  16. Li Y, Huang W, Li Y, Pei A, Boyle DT, Cui Y. Joule, 2018, 2: 2167–2177

    Article  CAS  Google Scholar 

  17. Zhang XQ, Chen X, Hou LP, Li BQ, Cheng XB, Huang JQ, Zhang Q. ACS Energy Lett, 2019, 4: 411–416

    Article  CAS  Google Scholar 

  18. Cao X, Jia H, Xu W, Zhang JG. J Electrochem Soc, 2021, 168: 010522

    Article  CAS  Google Scholar 

  19. Chen S, Zheng J, Mei D, Han KS, Engelhard MH, Zhao W, Xu W, Liu J, Zhang JG. Adv Mater, 2018, 30: 1706102

    Article  Google Scholar 

  20. Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang JG. Nat Commun, 2015, 6: 6362

    Article  PubMed  CAS  Google Scholar 

  21. Fan X, Chen L, Ji X, Deng T, Hou S, Chen J, Zheng J, Wang F, Jiang J, Xu K, Wang C. Chem, 2018, 4: 174–185

    Article  CAS  Google Scholar 

  22. Yao YX, Chen X, Yan C, Zhang XQ, Cai WL, Huang JQ, Zhang Q. Angew Chem Int Ed, 2021, 60: 4090–4097

    Article  CAS  Google Scholar 

  23. Chen Y, Yu Z, Rudnicki P, Gong H, Huang Z, Kim SC, Lai JC, Kong X, Qin J, Cui Y, Bao Z. J Am Chem Soc, 2021, 143: 18703–18713

    Article  PubMed  CAS  Google Scholar 

  24. Huang Y, Li R, Weng S, Zhang H, Zhu C, Lu D, Sun C, Huang X, Deng T, Fan L, Chen L, Wang X, Fan X. Energy Environ Sci, 2022, 15: 4349–4361

    Article  CAS  Google Scholar 

  25. Yu Z, Wang H, Kong X, Huang W, Tsao Y, Mackanic DG, Wang K, Wang X, Huang W, Choudhury S, Zheng Y, Amanchukwu CV, Hung ST, Ma Y, Lomeli EG, Qin J, Cui Y, Bao Z. Nat Energy, 2020, 5: 526–533

    Article  CAS  Google Scholar 

  26. Ren X, Chen S, Lee H, Mei D, Engelhard MH, Burton SD, Zhao W, Zheng J, Li Q, Ding MS, Schroeder M, Alvarado J, Xu K, Meng YS, Liu J, Zhang JG, Xu W. Chem, 2018, 4: 1877–1892

    Article  CAS  Google Scholar 

  27. Pham TD, Bin Faheem A, Kim J, Oh HM, Lee KK. Small, 2022, 18: 2107492

    Article  CAS  Google Scholar 

  28. Yamada Y, Wang J, Ko S, Watanabe E, Yamada A. Nat Energy, 2019, 4: 269–280

    Article  CAS  Google Scholar 

  29. Li T, Zhang XQ, Shi P, Zhang Q. Joule, 2019, 3: 2647–2661

    Article  CAS  Google Scholar 

  30. Ren X, Gao P, Zou L, Jiao S, Cao X, Zhang X, Jia H, Engelhard MH, Matthews BE, Wu H, Lee H, Niu C, Wang C, Arey BW, Xiao J, Liu J, Zhang JG, Xu W. Proc NatlAcad Sci USA, 2020, 117: 28603–28613

    Article  CAS  Google Scholar 

  31. Peng X, Lin Y, Wang Y, Li Y, Zhao T. Nano Energy, 2022, 96: 107102

    Article  CAS  Google Scholar 

  32. Zhao Y, Zhou T, Jeurgens LPH, Kong X, Choi JW, Coskun A. Chem, 2023, 9: 682–697

    Article  CAS  Google Scholar 

  33. Li C, Li Y, Chen Z, Zhou Y, Bai F, Li T. Chin Chem Lett, 2023, 34: 107852

    Article  CAS  Google Scholar 

  34. Jo Y, Jin D, Lim M, Lee H, An H, Seo J, Kim G, Ren X, Lee YM, Lee H. Adv Sci, 2023, 10: 2204812

    Article  CAS  Google Scholar 

  35. Zhou MY, Ding XQ, Ding JF, Hou LP, Shi P, Xie J, Li BQ, Huang JQ, Zhang XQ, Zhang Q. Joule, 2022, 6: 2122–2137

    Article  CAS  Google Scholar 

  36. Park E, Park J, Lee K, Zhao Y, Zhou T, Park G, Jeong MG, Choi M, Yoo DJ, Jung HG, Coskun A, Choi JW. ACS Energy Lett, 2022, 8: 179–188

    Article  Google Scholar 

  37. Yu Z, Rudnicki PE, Zhang Z, Huang Z, Celik H, Oyakhire ST, Chen Y, Kong X, Kim SC, Xiao X, Wang H, Zheng Y, Kamat GA, Kim MS, Bent SF, Qin J, Cui Y, Bao Z. Nat Energy, 2022, 7: 94–106

    Article  CAS  Google Scholar 

  38. Li Z, Rao H, Atwi R, Sivakumar BM, Gwalani B, Gray S, Han KS, Everett TA, Ajantiwalay TA, Murugesan V, Rajput NN, Pol VG. Nat Commun, 2023, 14: 868

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang Z, Wang H, Qi S, Wu D, Huang J, Li X, Wang C, Ma J. EcoMat, 2022, 4: e12200

    Article  CAS  Google Scholar 

  40. Zhu S, Chen J. Energy Storage Mater, 2022, 44: 48–56

    Article  Google Scholar 

  41. Chen S, Fan JJ, Cui Z, Tan L, Ruan D, Zhao X, Jiang J, Jiao S, Ren X. Angew Chem Int Ed, 2023, 62: e202219310

    Article  CAS  Google Scholar 

  42. Liang HJ, Su MY, Zhao XX, Gu ZY, Yang JL, Guo W, Liu ZM, Zhang JP, Wu XL. Sci China Chem, 2023, 66: 1982–1988

    Article  CAS  Google Scholar 

  43. Cao X, Zou L, Matthews BE, Zhang L, He X, Ren X, Engelhard MH, Burton SD, El-Khoury PZ, Lim HS, Niu C, Lee H, Wang C, Arey BW, Wang C, Xiao J, Liu J, Xu W, Zhang JG. Energy Storage Mater, 2021, 34: 76–84

    Article  Google Scholar 

  44. Ding JF, Xu R, Yao N, Chen X, Xiao Y, Yao YX, Yan C, Xie J, Huang JQ. Angew Chem Int Ed, 2021, 60: 11442–11447

    Article  CAS  Google Scholar 

  45. Chen X, Zhang XQ, Li HR, Zhang Q. Batteries Supercaps, 2019, 2: 128–131

    Article  CAS  Google Scholar 

  46. Yu Z, Balsara NP, Borodin O, Gewirth AA, Hahn NT, Maginn EJ, Persson KA, Srinivasan V, Toney MF, Xu K, Zavadil KR, Curtiss LA, Cheng L. ACS Energy Lett, 2022, 7: 461–470

    Article  CAS  Google Scholar 

  47. Zhou T, Zhao Y, El Kazzi M, Choi JW, Coskun A. Angew Chem Int Ed, 2022, 61: e202115884

    Article  CAS  Google Scholar 

  48. Holoubek J, Kim K, Yin Y, Wu Z, Liu H, Li M, Chen A, Gao H, Cai G, Pascal TA, Liu P, Chen Z. Energy Environ Sci, 2022, 15: 1647–1658

    Article  CAS  Google Scholar 

  49. Pham TD, Lee KK. Small, 2021, 17: 2100133

    Article  CAS  Google Scholar 

  50. Xia M, Jiao T, Liu G, Chen Y, Gao J, Cheng Y, Yang Y, Wang M, Zheng J. J Power Sources, 2022, 548: 232106

    Article  CAS  Google Scholar 

  51. Zhang QK, Zhang XQ, Hou LP, Sun SY, Zhan YX, Liang JL, Zhang FS, Feng XN, Li BQ, Huang JQ. Adv Energy Mater, 2022, 12: 2200139

    Article  CAS  Google Scholar 

  52. Li T, Zhang XQ, Yao N, Yao YX, Hou LP, Chen X, Zhou MY, Huang JQ, Zhang Q. Angew Chem Int Ed, 2021, 60: 22683–22687

    Article  CAS  Google Scholar 

  53. Wang Z, Hou LP, Li Z, Liang JL, Zhou MY, Zhao CZ, Zeng X, Li BQ, Chen A, Zhang XQ, Dong P, Zhang Y, Huang JQ, Zhang Q. Carbon Energy, 2023, 5: e283

    Article  CAS  Google Scholar 

  54. Deng W, Dai W, Zhou X, Han Q, Fang W, Dong N, He B, Liu Z. ACS Energy Lett, 2021, 6: 115–123

    Article  CAS  Google Scholar 

  55. Liu Z, Guo D, Fan W, Xu F, Yao X. ACS Mater Lett, 2022, 4: 1516–1522

    Article  CAS  Google Scholar 

  56. Zhang K, Liu W, Gao Y, Wang X, Chen Z, Ning R, Yu W, Li R, Li L, Li X, Yuan K, Ma L, Li N, Shen C, Huang W, Xie K, Loh KP. Adv Mater, 2021, 33: 2006323

    Article  CAS  Google Scholar 

  57. Zhao P, Li Y, Chen S, Fan H, Feng Y, Hu LL, Zhang Y, Nie Q, Pei H, Yang C, Deng JK, Bao C, Song J. Adv Energy Mater, 2022, 12: 2200568

    Article  CAS  Google Scholar 

  58. Yang H, Liu Q, Wang Y, Ma Z, Tang P, Zhang X, Cheng HM, Sun Z, Li F. Small, 2022, 18: 2202349

    Article  CAS  Google Scholar 

  59. Zhang QK, Zhang XQ, Wan J, Yao N, Song TL, Xie J, Hou LP, Zhou MY, Chen X, Li BQ, Wen R, Peng HJ, Zhang Q, Huang JQ. Nat Energy, 2023, 8: 725–735

    Article  CAS  Google Scholar 

  60. Zhang QK, Sun SY, Zhou MY, Hou LP, Liang JL, Yang SJ, Li BQ, Zhang XQ, Huang JQ. Angew Chem Int Ed, 2023, 62: e202306889

    Article  CAS  Google Scholar 

  61. Zhang Y, Zhao P, Nie Q, Li Y, Guo R, Hong Y, Deng J, Song J. Adv Mater, 2023, 35: 2211032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program (2021YFB2400300), the Beijing Natural Science Foundation (JQ20004), the National Natural Science Foundation of China (22209010 and 22109007), the Beijing Institute of Technology Research Fund Program for Young Scholars, and the Tsinghua University Initiative Scientific Research Program..

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Qiang Zhang or Jia-Qi Huang.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, JL., Sun, SY., Yao, N. et al. Regulating the electrolyte solvation structure by weakening the solvating power of solvents for stable lithium metal batteries. Sci. China Chem. 66, 3620–3627 (2023). https://doi.org/10.1007/s11426-023-1730-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1730-x

Navigation