Skip to main content
Log in

Influence of NSAIDs and methotrexate on CD73 expression and glioma cell growth

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Glioblastoma (GBM) is the most malignant and deadly brain tumor. GBM cells overexpress the CD73 enzyme, which controls the level of extracellular adenosine, an immunosuppressive molecule. Studies have shown that some nonsteroidal anti-inflammatory drugs (NSAIDs) and methotrexate (MTX) have antiproliferative and modulatory effects on CD73 in vitro and in vivo. However, it remains unclear whether the antiproliferative effects of MTX and NSAIDS in GBM cells are mediated by increases in CD73 expression and adenosine formation. The aim of this study was to evaluate the effect of the NSAIDs, naproxen, piroxicam, meloxicam, ibuprofen, sodium diclofenac, acetylsalicylic acid, nimesulide, and ketoprofen on CD73 expression in GBM and mononuclear cells. In addition, we sought to understand whether the effects of MTX may be mediated by CD73 expression and activity. Cell viability and CD73 expression were evaluated in C6 and mononuclear cells after exposure to NSAIDs. For analysis of the mechanism of action of MTX, GBM cells were treated with APCP (CD73 inhibitor), dipyridamole (inhibitor of adenosine uptake), ABT-702 (adenosine kinase enzyme inhibitor), or caffeine (P1 adenosine receptor antagonist), before treatment with MTX and AMP, in the presence or not of mononuclear cells. In summary, only MTX increased the expression of CD73 in GBM cells decreasing cells viability by mechanisms independent of the adenosinergic system. Further studies are needed to understand the role of MTX in the GBM microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  2. Perry A, Wesseling P (2016) Histologic classification of gliomas. Handb Clin Neurol 134:71–95. https://doi.org/10.1016/B978-0-12-802997-8.00005-0

    Article  PubMed  Google Scholar 

  3. Hanahan D, Coussens LM (2012) Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment. Cancer Cell 21:309–322. https://doi.org/10.1016/j.ccr.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  4. Aldape K, Zadeh G, Mansouri S, Reifenberger G, von Deimling A (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129(6):829–848. https://doi.org/. https://doi.org/10.1007/s00401-015-1432-1

    Article  CAS  PubMed  Google Scholar 

  5. Schneider T, Mawrin C, Scherlach C, Skalej M, Firsching R (2010) Gliomas in adults. Dtsch Arztebl Int 107(45):799–807; quiz 808. https://doi.org/10.3238/arztebl.2010.0799

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mello PA, Coutinho-Silva R, Savio LEB (2017) Multifaceted effects of extracellular adenosine triphosphate and adenosine in the tumor-host interaction and therapeutic perspectives. Front Immunol 8:1–17. https://doi.org/10.3389/fimmu.2017.01526

    Article  CAS  Google Scholar 

  7. Bastid J, Cottalorda-Regairaz A, Alberici G, Bonnefoy N, Eliaou JF, Bensussan A (2012) ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene 32(14):1743–1751. https://doi.org/10.1038/onc.2012.269

    Article  CAS  PubMed  Google Scholar 

  8. Borsellino G, Kleinewietfeld M, Di Mitri D et al (2007) Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110(4):1225–1232. https://doi.org/10.1182/blood-2006-12-064527

    Article  CAS  PubMed  Google Scholar 

  9. Albesiano E, Han JE, Lim M (2010) Mechanisms of local immunoresistance in glioma. Neurosurg Clin N Am 21(1):17–29. https://doi.org/10.1016/j.nec.2009.08.008

    Article  PubMed  Google Scholar 

  10. Bavaresco L, Bernardi A, Braganhol E, Cappellari AR, Rockenbach L, Farias PF, Wink MR, Delgado-Cañedo A, Battastini AMO (2008) The role of ecto-5′-nucleotidase/CD73 in glioma cell line proliferation. Mol Cell Biochem 319(1-2):61–68. https://doi.org/10.1007/s11010-008-9877-3

    Article  CAS  PubMed  Google Scholar 

  11. Azambuja JH, Gelsleichter NE, Beckenkamp LR, Iser IC, Fernandes MC, Figueiró F, Battastini AMO, Scholl JN, de Oliveira FH, Spanevello RM, Sévigny J, Wink MR, Stefani MA, Teixeira HF, Braganhol E (2019) CD73 downregulation decreases in vitro and in vivo glioblastoma growth. Mol Neurobiol 56:3260–3279. https://doi.org/10.1007/s12035-018-1240-4

    Article  CAS  PubMed  Google Scholar 

  12. Xu S, Shao QQ, Sun JT, Yang N, Xie Q, Wang DH, Huang QB, Huang B, Wang XY, Li XG, Qu X (2013) Synergy between the ectoenzymes CD39 and CD73 contributes to adenosinergic immunosuppression in human malignant gliomas. Neuro Oncol 15(9):1160–1172. https://doi.org/10.1093/neuonc/not067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rainsford KD (2007) Anti-inflammatory drugs in the 21st century. Subcell Biochem 42:3–27. https://doi.org/10.1007/1-4020-5688-5_1

    Article  CAS  PubMed  Google Scholar 

  14. Carvalho AW, Carvalho RDS, Rios-Santos F (2004) Specific cyclooxygenase-2 inhibitor analgesics: therapeutic advances. Rev Bras Anestesiol 54(3):448–464. https://doi.org/10.1590/S0034-70942004000300017

    Article  CAS  PubMed  Google Scholar 

  15. Williamson T, Bai RY, Staedtke V et al (2016) Mebendazole and a non-steroidal anti-inflammatory combine to reduce tumor initiation in a colon cancer preclinical model. Oncotarget 7(42):68571–68584. https://doi.org/10.18632/oncotarget.11851

    Article  PubMed  PubMed Central  Google Scholar 

  16. Baek SJ (2002) Dual function of nonsteroidal anti-inflammatory drugs (NSAIDs): inhibition of cyclooxygenase and induction of NSAID-activated gene. J Pharmacol Exp Ther 301(3):1126–1131. https://doi.org/10.1124/jpet.301.3.1126

    Article  CAS  PubMed  Google Scholar 

  17. Bernardi A, Bavaresco L, Wink MR, Jacques-Silva MC, Delgado-Cañedo A, Lenz G, Battastini AMO (2007) Indomethacin stimulates activity and expression of ecto5′-nucleotidase/CD73 in glioma cell lines. Eur J Pharmacol 569(1-2):8–15. https://doi.org/10.1016/j.ejphar.2007.04.058

    Article  CAS  PubMed  Google Scholar 

  18. Luedi MM, Singh SK, Mosley JC, Hassan ISA, Hatami M, Gumin J, Andereggen L, Sulman EP, Lang FF, Stueber F, Fuller GN, Colen RR, Zinn PO (2018) Dexamethasone-mediated oncogenicity in vitro and in an animal model of glioblastoma. J Neurosurg 129:1446–1455. https://doi.org/10.3171/2017.7.JNS17668

    Article  CAS  PubMed  Google Scholar 

  19. McHugh CI, Thipparthi MR, Lawhorn-Crews JM et al (2018) Using radiolabeled 3′-deoxy-3′-18F-fluorothymidine with PET to monitor the effect of dexamethasone on non-small cell lung cancer. J Nucl Med 59:1544–1550. https://doi.org/10.2967/jnumed.117.207258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang H, Li M, Rinehart JJ, Zhang R (2004) Pretreatment with dexamethasone increases antitumor activity of carboplatin and gemcitabine in mice bearing human cancer xenografts: in vivo activity, pharmacokinetics, and clinical implications for cancer chemotherapy. Clin Cancer Res 10(5):1633–1644. https://doi.org/10.1158/1078-0432.ccr-0829-3

    Article  CAS  PubMed  Google Scholar 

  21. Wang H, Wang Y, Rayburn ER, Hill D, Rinehart J, Zhang R (2007) Dexamethasone as a chemosensitizer for breast cancer chemotherapy: potentiation of the antitumor activity of adriamycin, modulation of cytokine expression, and pharmacokinetics. Int J Oncol 30(4):947–953. https://doi.org/10.3892/ijo.30.4.947

    Article  CAS  PubMed  Google Scholar 

  22. Bavaresco L, Bernardi A, Braganhol E, Wink MR, Battastini AMO (2007) Dexamethasone inhibits proliferation and stimulates ecto-5′- nucleotidase/CD73 activity in C6 rat glioma cell line. J Neurooncol 84(1):1–8. https://doi.org/10.1007/s11060-007-9342-2

    Article  CAS  PubMed  Google Scholar 

  23. Jeibouei S, Akbari ME, Kalbasi A, Aref A, Ajoudanian M, Rezvani A, Zali H (2019) Personalized medicine in breast cancer: pharmacogenomics approaches. Pharmgenomics Pers Med 12:59–73. https://doi.org/10.2147/PGPM.S167886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Patel JN (2016) Cancer pharmacogenomics, challenges in implementation, and patient-focused perspectives. Pharmgenomics Pers Med 9:65–77. https://doi.org/10.2147/PGPM.S62918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Purcell WT, Ettinger DS (2003) Novel antifolate drugs. Curr Oncol Rep 5(2):114–125. https://doi.org/10.1007/s11912-003-0098-3

    Article  PubMed  Google Scholar 

  26. Mcguire JJ (2003) Anticancer antifolates: current status and future directions. Curr Pharm Des 9(31):2593–2613. https://doi.org/10.2174/1381612033453712

    Article  CAS  PubMed  Google Scholar 

  27. Grim J, Chládek J, Martínková J (2003) Pharmacokinetics and pharmacodynamics of methotrexate in non-neoplastic diseases. Clin Pharmacokinet 42(2):139–151. https://doi.org/10.2165/00003088-200342020-00003

    Article  CAS  PubMed  Google Scholar 

  28. Huennekens FM (1994) The methotrexate story: a paradigm for development of cancer chemotherapeutic agents. Adv Enzyme Regul 34:397–419. https://doi.org/10.1016/0065-2571(94)90025-6

    Article  CAS  PubMed  Google Scholar 

  29. Figueiró F, de Oliveira CP, Bergamin LS, Rockenbach L, Mendes FB, Jandrey EHF, Moritz CEJ, Pettenuzzo LF, Sévigny J, Guterres SS, Pohlmann AR, Battastini AMO (2016) Methotrexate up-regulates ecto-5′-nucleotidase/CD73 and reduces the frequency of T lymphocytes in the glioblastoma microenvironment. Purinergic Signal 12(2):303–312. https://doi.org/10.1007/s11302-016-9505-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scherer EB, Savio LE, Vuaden FC, Ferreira AG, Bogo MR, Bonan CD, Wyse AT (2012) Chronic mild hyperhomocysteinemia alters ectonucleotidase activities and gene expression of ecto-5′-nucleotidase/CD73 in rat lymphocytes. Mol Cell Biochem 362(1-2):187–194. https://doi.org/10.1007/s11010-011-1141-6

    Article  CAS  PubMed  Google Scholar 

  31. Butowski NA, Sneed PK, Chang SM (2006) Diagnosis and treatment of recurrent high-grade astrocytoma. J Clin Oncol 24(8):1273–1280. https://doi.org/10.1200/JCO.2005.04.7522

    Article  CAS  PubMed  Google Scholar 

  32. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. https://doi.org/10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lapointe S, Perry A, Butowski NA (2018) Primary brain tumours in adults. Lancet 392(10145):432–446. https://doi.org/10.1016/S0140-6736(18)30990-5

    Article  PubMed  Google Scholar 

  34. Watters JJ, Schartner JM, Badie B (2005) Microglia function in brain tumors. J Neurosci Res 81(3):447–455. https://doi.org/10.1002/jnr.20485

    Article  CAS  PubMed  Google Scholar 

  35. da Silveira EF, Chassot JM, Teixeira FC, Azambuja JH, Debom G, Beira FT, del Pino FAB, Lourenço A, Horn AP, Cruz L, Spanevello RM, Braganhol E (2013) Ketoprofen-loaded polymeric nanocapsules selectively inhibit cancer cell growth in vitro and in preclinical model of glioblastoma multiforme. Invest New Drugs 31(6):1424–1435. https://doi.org/10.1007/s10637-013-0016-y

    Article  CAS  PubMed  Google Scholar 

  36. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362(4-5):299–309. https://doi.org/. https://doi.org/10.1007/s002100000309

    Article  CAS  PubMed  Google Scholar 

  37. Wang R, Zhang Y, Lin X et al (2017) Prognositic value of CD73-adenosinergic pathway in solid tumor: a meta-analysis and systematic review. Oncotarget 8(34):57327–57336. https://doi.org/10.18632/oncotarget.16905

    Article  PubMed  PubMed Central  Google Scholar 

  38. Figueiró F, de Oliveira CP, Rockenbach L, Mendes FB, Bergamin LS, Jandrey EHF, Edelweiss MI, Guterres SS, Pohlmann AR, Battastini AMO (2015) Pharmacological improvement and preclinical evaluation of methotrexate-loaded lipid-core nanocapsules in a glioblastoma model. J Biomed Nanotechnol 11(10):1808–1818. https://doi.org/10.1166/jbn.2015.2125

    Article  CAS  PubMed  Google Scholar 

  39. Shevchenko I, Mathes A, Groth C, Karakhanova S, Müller V, Utikal J, Werner J, Bazhin AV, Umansky V (2020) Enhanced expression of CD39 and CD73 on T cells in the regulation of anti-tumor immune responses. OncoImmunology 9(1):1744946. https://doi.org/10.1080/2162402X.2020.1744946T

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang C, Lin W, Playa H, Sun S, Cameron K, Buolamwini JK (2013) Dipyridamole analogs as pharmacological inhibitors of equilibrative nucleoside transporters. Identification of novel potent and selective inhibitors of the 55 adenosine transporter function of human equilibrative nucleoside transporter 4 (hENT4). Biochem Pharmacol 86(11):1531–1540. https://doi.org/10.1016/j.bcp.2013.08.063

    Article  CAS  PubMed  Google Scholar 

  41. Boyle DL, Kowaluk EA, Jarvis MF, Lee CH, Bhagwat SS, Williams M, Firestein GS (2001) Anti-inflammatory effects of ABT-702, a novel nonnucleoside adenosine kinase inhibitor, in rat adjuvant arthritis. J Pharmacol Exp Ther 296(2):495–500

    CAS  PubMed  Google Scholar 

  42. Solinas G, Germano G, Mantovani A, Allavena P (2009 Nov) (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86(5):1065–1073. https://doi.org/10.1189/jlb.0609385

    Article  CAS  PubMed  Google Scholar 

  43. Balkwill F, Coussens LM (2004) Cancer: an inflammatory link. Nature 431(7007):405–406. https://doi.org/10.1038/431405a

    Article  CAS  PubMed  Google Scholar 

  44. Nieto-Sampedro M, Valle-Argos B, Gómez-Nicola D, Fernández-Mayoralas A, Nieto-Díaz M (2011) Inhibitors of glioma growth that reveal the tumour to the immune system. Clin Med Insights Oncol 5:265–314. https://doi.org/10.4137/CMO.S7685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507. https://doi.org/10.1056/NEJMra0708126

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the following Brazilian agencies: F.F. and A.M.O.B. received support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/PQ no. 302879/2017-0), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS/PQG numbers: 17/2551- 0000 970-3 and 19/2551-0001783-9 and FAPERGS/PRONEX - project number 16/2551- 0000473-0), and Instituto Nacional de Ciência e Tecnologia (INCT; INCT/CNPq/CAPES/FAPERGS no. 465671/2014-4). A.F.D., L.F.L.S., and J.N.S. were recipients of CNPq fellowship. J.S. received support from the Natural Sciences and Engineering Research Council of Canada (NSERC; RGPIN-2016-05867) and was the recipient of a “Chercheur National” Scholarship from the Fonds de Recherche du Québec – Santé (FRQS).

Author information

Authors and Affiliations

Authors

Contributions

The investigation was planned by D.V.L. and F.F. Cell culture experiments were performed by D.V.L., A.F.D., J.N.S., and L.F.L.S. with guidance from F.F and A.M.O.B. The anti-rat CD73 antibody was donated by J.S. Data processing, and the writing of this manuscript was performed by A.F.D. and L.F.L.S. with input from all co-authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fabrício Figueiró.

Ethics declarations

Conflict of interest

Daniela Vasconcelos Lopes declares no competing interests.

Amanda de Fraga Dias declares no competing interests.

Luiz Fernando Lopes Silva declares no competing interests.

Juliete Nathali Scholl declares no competing interests.

Jean Sévigny declares no competing interests.

Ana Maria Oliveira Battastini declares no competing interests.

Fabrício Figueiró declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, D.V., de Fraga Dias, A., Silva, L.F.L. et al. Influence of NSAIDs and methotrexate on CD73 expression and glioma cell growth. Purinergic Signalling 17, 273–284 (2021). https://doi.org/10.1007/s11302-021-09775-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-021-09775-w

Keywords

Navigation