Skip to main content

Advertisement

Log in

Assessment of nutrient contents and bio-functional activities of edible fungus bio-fortified with copper, lithium and zinc

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bio-enrichment of edible mushrooms is an outstanding strategy to deliver essential nutrients to human. In this study, an edible fungus; Pleurotus pulmonarius was cultivated on spent mushroom substrate (SMS) supplemented with copper, lithium, and zinc. Proximate and mineral analysis of cultivated mushroom was determined using methods of AOAC. Antimicrobial activity of cultivated mushroom was assessed against microorganisms using agar well diffusion. Antioxidant property of mushroom was assessed against free radicals. Similar (p ≤ 0.05) protein contents of 18.93%, 18.80% and 17.90% were respectively obtained in P. pulmonarius biofortified with Cu + Li + Zn, Cu + Zn and Zn. Crude fibre in element fortified-mushroom ranged from 9.02 to 10.11%, while non-fortified mushroom was 8.66%. Copper content of P. pulmonarius fortified with Cu alone and Cu + Zn were 96.12 mg/100 g and 98.09 mg/100 g, respectively. Mushroom fortified with Zn has the highest zinc content of 520.15 mg/100 g. Mushroom fortified with Li and Li + Zn have a similar (p ≤ 0.05) Li content of 106.02 mg/100 g and 104.30 mg/100 g, respectively. Extract from mushroom-fortified with copper has the highest zone of inhibition (15.1 mm) against Klebsiella pneumoniae at 1.0 mg/ml. Mushroom fortified with Cu + Li + Zn and Li + Zn, respectively have similar (p ≤ 0.05) scavenging activities of 79.10 and 81.0% against DPPH. Mushroom fortified with Zn or Zn + Cu enhanced the growth of Lactobacillus acidophilus and Lactobacillus plantarum. Antimicrobial, antioxidant and prebiotic activities of fortified-mushroom could be attributed to arrays of phytochemicals and bio-accumulated elements. Hence, bio-fortified mushrooms can be used as functional foods and as biopharmaceuticals to treat ailments associated with nutrient deficient.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ab Rhaman SMS, Naher L, Siddiquee S (2022) Mushroom quality related with various substrates’ bioaccumulation and translocation of heavy metals. J Fungi 8:42. https://doi.org/10.3390/jof8010042

    Article  CAS  Google Scholar 

  • Alonso J, García MA, Pérez-López M, Melgar MJ (2003) The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch Environ Contam Toxicol 44(2):180–188. https://doi.org/10.1007/s00244-002-2051-0

    Article  CAS  Google Scholar 

  • Antunes F, Marçal S, Taofiq O, Morais A, Freitas AC, Ferreira I, Pintado M (2020) Valorization of mushroom by-products as a source of value-added compounds and potential applications. Molecules 25(11):2672. https://doi.org/10.3390/molecules25112672

    Article  CAS  Google Scholar 

  • Balakrishnan K, Dhanasekaran D, Krishnaraj V, Anbukumaran A, Ramasamy T, Manickam M, Dhanasekaran D (eds) (2021) Mushrooms a promising bioresource for prebiotics advances in probiotics microorganisms in food and health. Academic Press, Cambridge, pp 81–97

  • Balan V, Zhu W, Krishnamoorthy H et al (2022) Challenges and opportunities in producing high-quality edible mushrooms from lignocellulosic biomass in a small scale. Appl Microbiol Biotechnol 106:1355–1374. https://doi.org/10.1007/s00253-021-11749-2

    Article  CAS  Google Scholar 

  • Bains A, Chawla P, Kaur S, Najda A, Fogarasi M, Fogarasi S (2021) Bioactives from mushroom: health attributes and food industry applications. Materials 14(24):7640. https://doi.org/10.3390/ma14247640

    Article  CAS  Google Scholar 

  • Bellettini MB, Fiorda FA, Maieves HA, Teixeira GL, Ávila S, Hornung PS, Júnior AM, Ribani RH (2019) Factors affecting mushroom Pleurotus spp. Saudi J Biol Sci 26(4):633–646. https://doi.org/10.1016/j.sjbs.2016.12.005

    Article  Google Scholar 

  • Brown KM, Tracy DK (2013) Lithium: the pharmacodynamic actions of the amazing ion. Therapeutic Adv Psychopharmacol 3(3):163–176. https://doi.org/10.1177/2045125312471963

    Article  CAS  Google Scholar 

  • Budzyńska S, Siwulski M, Magdziak Z, Budka A, Gąsecka M, Kalač P, Rzymski P, Niedzielski P, Mleczek M (2021) Influence of iron addition (alone or with calcium) to elements biofortification and antioxidants in Pholiota nameko. Plants 10(11):2275. https://doi.org/10.3390/plants10112275

    Article  CAS  Google Scholar 

  • Cheesbrough M (2006) District laboratory practices in tropical countries part 2, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • de Souza Lopes L, de Casssia Silva M, de Oliveira Faustino A, de Oliveira LL, Kasuya MCM (2022) Bioaccessibility, oxidizing activity and co-accumulation of minerals in Li-enriched mushrooms. LWT Food Sci Technol 155:112989. https://doi.org/10.1016/j.lwt.2021.112989

    Article  CAS  Google Scholar 

  • de Vries-Ten H, Owolabi J, Steijns A, Kudla J, Melse-Boonstra A (2020) Protein intake adequacy among nigerian infants, children, adolescents and women and protein quality of commonly consumed foods. Nutr Res Rev 33(1):102–120. https://doi.org/10.1017/S0954422419000222

    Article  Google Scholar 

  • Fogarasi M, Diaconeasa ZM, Pop CR, Fogarasi S, Semeniuc CA, Fărcaş AC, Țibulcă D, Sălăgean C-D, Tofană M, Socaci SA (2020) Elemental composition, antioxidant and antibacterial properties of some wild edible mushrooms from Romania. Agronomy 10(12):1972. https://doi.org/10.3390/agronomy10121972

    Article  CAS  Google Scholar 

  • Gasecka M, Mleczek M, Siwulski M, Niedzielski P (2016) Phenolic composition and antioxidant properties of Pleurotus ostreatus and Pleurotus eryngii enriched with selenium and zinc. Eur Food Res Technol 242:723–732. https://doi.org/10.1007/s00217-015-2580-1

    Article  CAS  Google Scholar 

  • Gonzalez A, Cruz M, Losoya C, Nobre C, Loredo A, Rodriguez R, Contreras J, Belmares R (2020) Edible mushrooms as a novel protein source for functional foods. Food Funct 11:7400–7414

    Article  CAS  Google Scholar 

  • Gyamfi MA, Yonamine M, Aaniya Y (1999) Free radical scavenging action of medicinal herbs from Ghana: Thonningia sanguine on experimentally induced liver injuries. Gen Pharmacol 32:661–667

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC, Aruoma OI (1987) The deoxyribose method: a simple ‘Test-Tube’ assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165:215–219

    Article  CAS  Google Scholar 

  • Henchion M, Hayes M, Mullen AM, Fenelon M, Tiwari B (2017) Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods 6(7):53. https://doi.org/10.3390/foods6070053

    Article  CAS  Google Scholar 

  • Ho L, Zulkifli NA, Tan T (2020) Edible mushroom: nutritional properties, potential nutraceutical values, and its utilisation in food product development. In: Passari AK, Sánchez S (eds) An introduction to mushroom. IntechOpen, London

    Google Scholar 

  • Hossen SMM, Hossain MS, Yusuf A, Chaudhary P, Emon NU, Janmeda P (2021) Profiling of phytochemical and antioxidant activity of wild mushrooms: evidence from the in vitro study and phytoconstituent’s binding affinity to the human erythrocyte catalase and human glutathione reductase. Food Sci Nutr 10(1):88–102. https://doi.org/10.1002/fsn3.2650

    Article  CAS  Google Scholar 

  • Kumar H, Bhardwaj K, Sharma R, Nepovimova E, Cruz-Martins N, Dhanjal DS, Singh R et al (2021) Potential usage of edible mushrooms and their residues to retrieve valuable supplies for industrial applications. J Fungi 7(6):427. https://doi.org/10.3390/jof7060427

    Article  CAS  Google Scholar 

  • Leonardi A, Zanoni S, De Lucia M, Amaretti A, Raimondi S, Rossi M (2013) Zinc uptake by lactic acid bacteria. ISRN biotechnol. https://doi.org/10.5402/2013/312917

    Article  Google Scholar 

  • MacDougall DB (2003) Sensory evaluation. In: Caballero B (ed) Appearance, encyclopedia of food sciences and nutrition, 2nd edn. Academic Press, Cambridge, pp 5161–5167

    Chapter  Google Scholar 

  • Manan S, Ullah MW, Ul-Islam M, Atta OM, Yang G (2021) Synthesis and applications of fungal mycelium-based advanced functional materials. J Bioresources Bioprod 6:1–10. https://doi.org/10.1016/j.jobab.2021.01.001

    Article  CAS  Google Scholar 

  • Maxfield L, Shukla S, Crane JS (2022) Zinc deficiency. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  • Meda A, Lamien CE, Romito M, Milligo J, Nacoulma OG (2005) Determination of the total phenolic, flavonoid and proline contents in Burkinafaso honey as well as their radical scavenging activity. Food Chem 19:571–577

    Article  Google Scholar 

  • Mleczek M, Siwulski M, Rzymski P, Budzynska S, Gąsecka M, Kalac P et al (2017) Cultivation of mushrooms for production of food biofortified with lithium. Eur Food Res Technol 243:1097–1104. https://doi.org/10.1007/s00217-016-2823-9

    Article  CAS  Google Scholar 

  • Moumita S, Das B (2022) Assessment of the prebiotic potential and bioactive components of common edible mushrooms in India and formulation of synbiotic microcapsules. LWT 156:113050. https://doi.org/10.1016/j.lwt.2021.113050

    Article  CAS  Google Scholar 

  • Mrvcic J, Stanzer D, Bacun-Druzina V, Stehlik-Tomas V (2009) Copper binding by lactic acid Bacteria (LAB). Biosci Microflora 28(1):1–6

    Article  CAS  Google Scholar 

  • Mudroňová D, Gancarčíková S, Nemcová R (2019) Influence of zinc sulphate on the probiotic properties of Lactobacillus plantarum CCM 7102. Folia Veterinaria 63:45–54. https://doi.org/10.2478/fv-2019-0018

    Article  CAS  Google Scholar 

  • Muszyńska B, Kała K, Włodarczyk A, Krakowska A, Ostachowicz B, Gdula-Argasińska J, Suchocki P (2020) Lentinula edodes as a source of bioelements released into artificial digestive juices and potential anti-inflammatory material. Biol Trace Elem Res 194(2):603–613. https://doi.org/10.1007/s12011-019-01782-8

    Article  CAS  Google Scholar 

  • Naeem A, Aslam M, Saifullah, Mühling KH (2021) Lithium: perspectives of nutritional beneficence, dietary intake, biogeochemistry, and biofortification of vegetables and mushrooms. Sci Total Environ 798:149249. doi:https://doi.org/10.1016/j.scitotenv.2021.1

    Article  CAS  Google Scholar 

  • Nunes MD, Cardoso WL, Luz JEM, Kasuya MC (2015) Effects of lithium compounds on the growth of white-rot fungi African. J Microbiol Res 9:1954–1959. https://doi.org/10.5897/AJMR2015.7529

    Article  CAS  Google Scholar 

  • Ogidi CO, Oyetayo VO, Akinyele BJ (2020b) Wild medicinal mushrooms: potential applications in phytomedicine and functional foods. In: Passari AK, Sánchez S (eds) An introduction to mushroom. IntechOpen, London

  • Ogidi CO, Akindulureni ED, Agbetola OY, Akinyele BJ (2020a) Calcium bioaccumulation by Pleurotus ostreatus and Lentinus squarrosulus cultivated on palm tree wastes supplemented with calcium-rich animal wastes or calcium salts. Waste Biomass Valor 11:4235–4244. https://doi.org/10.1007/s12649-019-00760-4

  • Oyetayo VO, Ogidi CO, Bayode SO, Enikanselu FF (2021) Evaluation of biological efficiency, nutrient contents and antioxidant activity of Pleurotus pulmonarius enriched with zinc and Iron. Indian Phytopathol. https://doi.org/10.1007/S42360-021-00410-7

    Article  Google Scholar 

  • Pankavec S, Falandysz J, Hanć A, Komorowicz I, Barałkiewicz D, Fernandes AR (2021a) Enhancing the lithium content of white button mushrooms Agaricus bisporus using LiNO3 fortified compost: effects on the uptake of Li and other trace elements. Food Addit Contaminants Part A 38(7):1193–1205. https://doi.org/10.1080/19440049.2021.1912401

  • Pankavec S, Falandysz J, Komorowicz I et al (2021b) The use of Li2O fortified growing compost to enhance lithiation in white Agaricus bisporus mushrooms: Li uptake and co-accumulation of other trace elements. Eur Food Res Technol 247:2239–2252. https://doi.org/10.1007/s00217-021-03784-0

    Article  CAS  Google Scholar 

  • Paradeshi JS, Patil SN, Koli SH, Chaudhari BL (2018) Effect of copper on probiotic properties of Lactobacillus helveticus CD6. Int J Dairy Technol 71(S1):204–212. https://doi.org/10.1111/1471-0307.123842018

    Article  CAS  Google Scholar 

  • Poniedziałek B, Mleczek M, Niedzielski P et al (2017) Bio-enriched Pleurotus mushrooms for deficiency control and improved antioxidative protection of human platelets? Eur Food Res Technol 243:2187–2198. https://doi.org/10.1007/s00217-017-2921-3

    Article  CAS  Google Scholar 

  • Poursaeid N, Azadbakht A, Balali GR (2015) Improvement of zinc bioaccumulation and biomass yield in the mycelia and fruiting bodies of Pleurotus florida cultured on liquid media. Appl Biochem Biotechnol 175:3387–3396

    Article  CAS  Google Scholar 

  • Puntel RL, Nogueira CW, Rocha JBT (2005) Krebs cycle intermediates modulate thiobarbituric acid reactive species (TBARS) production in rat brain in vitro. Neurochem Res 30(2):225–235

    Article  CAS  Google Scholar 

  • Rangel-Vargas E, Rodriguez JA, Domínguez R, Lorenzo JM, Sosa ME, Andrés SC, Rosmini M, Pérez-Alvarez JA, Teixeira A, Santos EM (2021) Edible mushrooms as a natural source of food ingredient/additive replacer. Foods 10(11):2687. https://doi.org/10.3390/foods10112687

    Article  CAS  Google Scholar 

  • Rinker DL (2017) Spent mushroom substrate uses. In: Zied DC, Pardo-Gimenez A (eds) Edible and medicinal mushrooms: technology and applications. Wiley-Blackwell, West Sussex, UK, pp 427–454

    Chapter  Google Scholar 

  • Román MPG, Mantilla NB, Flórez SAC, De Mandal S, Passari AK, Ruiz-Villáfan B, Rodríguez-Sanoja R, Sánchez S (2020) Antimicrobial and antioxidant potential of wild edible mushrooms. In: Passari AK, Sánchez S (eds) An introduction to mushroom. IntechOpen, London

    Google Scholar 

  • Roncero-Ramos I, Delgado-Andrade C (2017) The beneficial role of edible mushrooms in human health. Curr Opin Food Sci 14:122–128

    Article  Google Scholar 

  • Ronis M, Pedersen KB, Watt J (2018) Adverse effects of nutraceuticals and dietary supplements. Annu Rev Pharmacol Toxicol 58:583–601. https://doi.org/10.1146/annurev-pharmtox-010617-052844

    Article  CAS  Google Scholar 

  • Roohani N, Hurrell R, Kelishadi R, Schulin R (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci: official J Isfahan Univ Med Sci 18(2):144–157

    Google Scholar 

  • Rzymski P, Niedzielski P, Siwulski M, Mleczek M, Budzyńska S, Gąsecka M (2017) Lithium biofortification of medicinal mushrooms Agrocybe cylindracea and Hericium erinaceus. J Food Sci Technol 54:2387–2393. https://doi.org/10.1007/s13197-017-2679-4

    Article  CAS  Google Scholar 

  • Sawangwan T, Wansanit W, Pattani L, Noysang C (2018) Study of prebiotic properties from edible mushroom extraction. Agric Nat Resour 52:519–524

    Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Cioalteau reagents. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Soetan KO, Olaiya CO, Oyewole OE (2010) The importance of mineral elements for humans, domestic animals and plants: a review. Afr J Food Sci 4(5):200–222

    CAS  Google Scholar 

  • Szklarska D, Rzymski P (2019) Is lithium a micronutrient? From biological activity and epidemiological observation to food fortification. Biol Trace Elem Res 189(1):18–27. https://doi.org/10.1007/s12011-018-1455-2

    Article  CAS  Google Scholar 

  • Thu ZM, Myo KK, Aung HT, Clericuzio M, Armijos C, Vidari G (2020) Bioactive phytochemical constituents of wild edible mushrooms from Southeast Asia. Molecules 25(8):1972. https://doi.org/10.3390/molecules25081972

    Article  CAS  Google Scholar 

  • Trease GE, Evans MC (2005) Pharmacognosy, 14th edn. Elsevier, New Delhi

    Google Scholar 

  • Venturella G, Ferraro V, Cirlincione F, Gargano ML (2021) Medicinal mushrooms: bioactive compounds, use, and clinical trials. Int J Mol Sci 22(2):634. https://doi.org/10.3390/ijms22020634

    Article  CAS  Google Scholar 

  • Wazir SM, Ghobrial I (2017) Copper deficiency, a new triad: anemia, leucopenia, and myeloneuropathy. J Community Hosp Intern Med Perspect 7(4):265–268. https://doi.org/10.1080/20009666.2017.1351289

    Article  Google Scholar 

  • Zięba P, Kała K, Włodarczyk A, Szewczyk A, Kunicki E, Sękara A, Muszyńska B (2020) Selenium and zinc biofortification of Pleurotus eryngii mycelium and fruiting bodies as a tool for controlling their biological activity. Molecules 25(4):889. https://doi.org/10.3390/molecules25040889

    Article  CAS  Google Scholar 

  • Zięba P, Sękara A, Bernaś E, Krakowska A, Sułkowska-Ziaja K, Kunicki E, Suchanek M, Muszyńska B (2021) Supplementation with magnesium salts–a strategy to increase nutraceutical value of Pleurotus djamor fruiting bodies. Molecules 26:3273. https://doi.org/10.3390/molecules26113273

    Article  CAS  Google Scholar 

  • Zied CD, Sánchez JE, Noble R, Pardo-Giménez A (2020) Use of spent mushroom substrate in new mushroom crops to promote the transition towards a circular economy. Agronomy 10(9):1239. https://doi.org/10.3390/agronomy10091239

    Article  CAS  Google Scholar 

Download references

Funding

No fund received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clement Olusola Ogidi.

Ethics declarations

Conflict of interest

Authors declared no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogidi, C.O., Oyebode, K.O. Assessment of nutrient contents and bio-functional activities of edible fungus bio-fortified with copper, lithium and zinc. World J Microbiol Biotechnol 39, 56 (2023). https://doi.org/10.1007/s11274-022-03500-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-022-03500-4

Keywords

Navigation