Skip to main content
Log in

Recent advances in the bioremediation of arsenic-contaminated soils: a mini review

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The carcinogenic metalloid arsenic (As), owing to its persistent behavior in elevated levels in soils, aggravates environmental and human health concerns. The current strategies used in the As decontamination involve several physical and chemical approaches. However, it involves high cost and even leads to secondary pollution. Therefore, it is quite imperative to explore methods that can eradicate As menace from the environment in an eco-friendly, efficient, and cost-competitive way. Searching for such viable alternatives leads to the option of bioremediation technology by utilizing various microorganisms, green plants, enzymes or even their integrated methods. This review is intended to give scientific and technical details about recent advances in the bioremediation strategies of As in soil. It takes into purview the extent, toxicological manifestations, pathways of As exposure and exemplifies the substantive need of bioremediation technologies such as phytoremediation and biosorption in a descriptive manner. Additionally, the paper looks into the wide potential of some plant growth promoting microorganisms (PGPMs) that improve plant growth on one hand and alleviate As toxicity on the other. Furthermore, it also makes a modest attempt to assimilate the use of nanoparticles, non-living biomass and transgenic crops which are the emerging alternative bioremediation technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams WJ, DeForest DK, Tear LM, Payne K, Brix KV (2015) Long-term monitoring of arsenic, copper, selenium, and other elements in Great Salt Lake (Utah, USA) surface water, brine shrimp, and brine flies. Environ Monit Assess 187(3):1–3

    Article  CAS  Google Scholar 

  • Armendariz AL, Talano MA, Oller AL, Medina MI, Agostini E (2015) Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants. J Environ Sci 33:203–210

    Article  CAS  Google Scholar 

  • Awasthi S, Chauhan R, Srivastava S, Tripathi RD (2017) The journey of arsenic from soil to grain in rice. Front Plant Sci 8:1007

    Article  PubMed  PubMed Central  Google Scholar 

  • Ben Fekih I, Zhang C, Li YP, Zhao Y, Alwathnani HA, Saquib Q, Rensing C, Cervantes C (2018) Distribution of arsenic resistance genes in prokaryotes. Front Microbiol 9:2473

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertin PN, Crognale S, Plewniak F, Battaglia-Brunet F, Rossetti S, Mench M (2021) Water and soil contaminated by arsenic: the use of microorganisms and plants in bioremediation. Environ Sci Pollut Res 2:1–28

    Google Scholar 

  • Bhattacharyya K, Sengupta S (2020) Arsenic management options in soil-plant-food chain. In: Proceedings-cum-abstract book national webinar on arsenic, p 17

  • Bhattacharyya K, Sengupta S, Pari A, Halder S, Bhattacharya P, Pandian BJ, Chinchmalatpure AR (2021) Characterization and risk assessment of arsenic contamination in soil–plant (vegetable) system and its mitigation through water harvesting and organic amendment. Environ Geochem Health 43(8):2819–2834

    Article  CAS  PubMed  Google Scholar 

  • Challenger F (1945) Biological methylation. Chem Rev 36:315–361

    Article  CAS  Google Scholar 

  • Chandra R, Banik A (2021) Detoxification and bioconversion of arsenic and chromium. In: Chandra R, Banik A (eds) Nanobiotechnology. Elsevier, New York, pp 253–270

    Chapter  Google Scholar 

  • Cullen WR, Bentley R (2005) The toxicity of trimethylarsine: an urban myth. J Environ Monit 7:11–15

    Article  CAS  PubMed  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89(4):713–764

    Article  CAS  Google Scholar 

  • Datta BK, Bhar MK, Patra PH, Majumdar D, Dey RR, Sarkar S, Mandal TK, Chakraborty AK (2012) Effect of environmental exposure of arsenic on cattle and poultry in Nadia district, West Bengal, India. Toxicol Int 19(1):59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Souza TD, Borges AC, Braga AF, Veloso RW, de Matos AT (2019) Phytoremediation of arsenic-contaminated water by Lemna valdiviana: an optimization study. Chemosphere 234:402–408

    Article  CAS  PubMed  Google Scholar 

  • Elekwachi CO, Andresen J, Hodgman TC (2014) Global use of bioremediation technologies for decontamination of ecosystems. J Bioremediat Biodegred 5(4):1

    Google Scholar 

  • Elless MP, Poynton CY, Willms CA, Doyle MP, Lopez AC, Sokkary DA, Ferguson BW, Blaylock MJ (2005) Pilot-scale demonstration of phytofiltration for treatment of arsenic in New Mexico drinking water. Water Res 39(16):3863–3872

    Article  CAS  PubMed  Google Scholar 

  • Fernández M, Morel B, Ramos JL, Krell T (2016) Paralogous regulators ArsR1 and ArsR2 of Pseudomonas putida KT2440 as a basis for arsenic biosensor development. Appl Environ Microbiol 82(14):4133–4144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garbinski LD, Rosen BP, Chen J (2019) Pathways of arsenic uptake and efflux. Environ Int 126:585–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaur N, Flora G, Yadav M, Tiwari A (2014) A review with recent advancements on bioremediation-based abolition of heavy metals. Environ Sci Process Impacts 16(2):180–193

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez Henao S, Ghneim-Herrera T (2021) Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Front Environ Sci 15:604216

    Article  Google Scholar 

  • Gupta K, Srivastava A, Kumar A (2020) Arsenic: threat to water as well as soil. In: Chowdhary P, Raj A (eds) Contaminants and clean technologies. CRC Press, Boca Raton, pp 165–187

    Chapter  Google Scholar 

  • Hammond CM, Root RA, Maier RM, Chorover J (2018) Mechanisms of arsenic sequestration by Prosopis juliflora during the phytostabilization of metalliferous mine tailings. Environ Sci Technol 52(3):1156–1164

  • Hossain MB, Jahiruddin M, Loeppert RH, Panaullah GM, Islam MR, Duxbury JM (2009) The effects of iron plaque and phosphorus on yield and arsenic accumulation in rice. Plant Soil 317(1):167–176

    Article  CAS  Google Scholar 

  • Hristovski KD, Nguyen H, Westerhoff PK (2009) Removal of arsenate and 17α-ethinyl estradiol (EE2) by iron (hydr) oxide modified activated carbon fibers. J Environ Sci Health Part A 44(4):354–361

    Article  CAS  Google Scholar 

  • Jalali R, Ghafourian H, Asef Y, Davarpanah SJ, Sepehr S. (2002) Removal and recovery of lead using nonliving biomass of marine algae. J Hazard Mater 92(3):253–262

    Article  CAS  PubMed  Google Scholar 

  • Kabiraj A, Biswas R, Halder U, Bandopadhyay R (2022) Bacterial arsenic metabolism and its role in arsenic bioremediation. Curr Microbiol 79(5):1–5

    Article  CAS  Google Scholar 

  • Kato K, Davis KL (1996) Current use of bioremediation for TCE cleanup: results of a survey. Remediat J 6(4):1–4

    Article  Google Scholar 

  • Kowitwiwat A, Sampanpanish P (2020) Phytostabilization of arsenic and manganese in mine tailings using Pennisetum purpureum cv. Mott supplemented with cow manure and acacia wood-derived biochar. Heliyon. 6(7):e04552

    Article  PubMed  PubMed Central  Google Scholar 

  • Laha A, Bhattacharyya S, Sengupta S, Bhattacharyya K, GuhaRoy S (2021) Investigation of arsenic-resistant, arsenite-oxidizing bacteria for plant growth promoting traits isolated from arsenic contaminated soils. Arch Microbiol 203(7):4677–4692

    Article  CAS  PubMed  Google Scholar 

  • Leiva ED, Rámila C, Vargas IT, Escauriaza CR, Bonilla CA, Pizarro GE, Regan JM, Pasten PA (2014) Natural attenuation process via microbial oxidation of arsenic in a high Andean watershed. Sci Total Environ 466:490–502

    Article  PubMed  CAS  Google Scholar 

  • Lim KT, Shukor MY, Wasob H (2014) Physical, chemical, and biological methods for the removal of arsenic compounds. BioMed Res Int 2014:1–9

    Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Nat Acad Sci 105(29):9931–9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahimairaja S, Bolan NS, Adriano DC, Robinson B (2005) Arsenic contamination and its risk management in complex environmental settings. Adv Agron 86:1–82

    Article  CAS  Google Scholar 

  • Mandal J, Golui D, Datta SP (2019a) Assessing equilibria of organo-arsenic complexes and predicting uptake of arsenic by wheat grain from organic matter amended soils. Chemosphere 234:419–426

    Article  CAS  PubMed  Google Scholar 

  • Mandal J, Golui D, Raj A, Ganguly P (2019b) Risk assessment of arsenic in wheat and maize grown in organic matter amended soils of indo-gangetic plain of Bihar, India. Soil Sedim Contam Int J 28(8):757–772

    Article  CAS  Google Scholar 

  • Mandal J, Sengupta S, Sarkar S, Mukherjee A, Wood MD, Hutchinson SM, Mondal D (2021) Meta-analysis enables prediction of the maximum permissible arsenic concentration in Asian paddy soil. Front Environ Sci 9:547

    Article  Google Scholar 

  • Mazumder A, Bhattacharyya K, Bhattacharyya S, Kole SC (2013) Arsenic-tolerant, arsenite-oxidising bacterial strains in the contaminated soils of West Bengal, India. Science of the total environment. 463:1006–1014

    Article  CAS  Google Scholar 

  • Menon M, Sarkar B, Hufton J, Reynolds C, Reina SV, Young S (2020) Do arsenic levels in rice pose a health risk to the UK population? Ecotoxicol Environ Saf 197:110601

    Article  CAS  PubMed  Google Scholar 

  • Mondal S, Pramanik K, Ghosh SK, Pal P, Mondal T, Soren T, Maiti TK (2021) Unraveling the role of plant growth-promoting rhizobacteria in the alleviation of arsenic phytotoxicity: a review. Microbiol Res 250:126809

    Article  CAS  PubMed  Google Scholar 

  • Mudhoo A, Garg VK, Wang S (2012) Removal of heavy metals by biosorption. Environ Chem Lett 10(2):109–117

    Article  CAS  Google Scholar 

  • Mukherjee A, Gupta S, Coomar P, Fryar AE, Guillot S, Verma S, Bhattacharya P, Bundschuh J, Charlet L (2019) Plate tectonics influence on geogenic arsenic cycling: from primary sources to global groundwater enrichment. Sci Total Environ 15(683):793–807

    Article  CAS  Google Scholar 

  • Oremland RS, Saltikov CW, Wolfe-Simon F, Stolz JF (2009) Arsenic in the evolution of earth and extraterrestrial ecosystems. Geomicrobiol J 26(7):522–536

    Article  CAS  Google Scholar 

  • Ospino MC, Kojima H, Fukui M (2019) Arsenite oxidation by a newly isolated betaproteobacterium possessing arx genes and diversity of the arx gene cluster in bacterial genomes. Front Microbiol 29(10):1210

    Article  Google Scholar 

  • Páez-Espino D, Tamames J, de Lorenzo V, Cánovas D (2009) Microbial responses to environmental arsenic. Biometals 22(1):117–130

    Article  PubMed  CAS  Google Scholar 

  • Pennesi C, Vegliò F, Totti C, Romagnoli T, Beolchini F (2012) Nonliving biomass of marine macrophytes as arsenic (V) biosorbents. J Appl Phycol 6:1495–1502

    Article  CAS  Google Scholar 

  • Roy P, Mondal NK, Bhattacharya S, Das B, Das K (2013) Removal of arsenic (III) and arsenic (V) on chemically modified low-cost adsorbent: batch and column operations. Appl Water Sci 3(1):293–309

    Article  CAS  Google Scholar 

  • Sanyal SK (2017) A textbook of soil chemistry. Daya Publishing House, A division of Astral International Pvt, Limited, India

    Google Scholar 

  • Satyapal GK, Rani S, Kumar M, Kumar N (2016) Potential role of arsenic resistant bacteria in bioremediation: current status and future prospects. J Microb Biochem Technol 8(3):256–258

    Article  CAS  Google Scholar 

  • Saxena P, Misra N (2010) Remediation of heavy metal contaminated tropical land. In: Saxenaa P, Misra N (eds) Soil heavy metals. Springer, Berlin, pp 431–477

    Chapter  Google Scholar 

  • Sengupta S, Dey S (2019) Universal multi-nutrient extractants in soil analysis-scope & prospects. Agric Food 1(11):406–410

    Google Scholar 

  • Sengupta S, Bhattacharyya K, Mandal J, Bhattacharya P, Halder S, Pari A (2021) Deficit irrigation and organic amendments can reduce dietary arsenic risk from rice: introducing machine learning-based prediction models from field data. Agric Ecosyst Environ 319:107516

    Article  CAS  Google Scholar 

  • Sengupta S, Bhattacharyya K, Mandal J, Chattopadhyay AP (2022) Complexation, retention and release pattern of arsenic from humic/fulvic acid extracted from zinc and iron enriched vermicompost. J Environ Manage 318:115531

    Article  CAS  PubMed  Google Scholar 

  • Shackira AM, Puthur JT (2019) Phytostabilization of heavy metals: understanding of principles and practices. In: Srivastava S et al (eds) Plant-metal interactions. Springer, Cham, pp 263–282

    Chapter  Google Scholar 

  • Shaji E, Santosh M, Sarath KV, Prakash P, Deepchand V, Divya BV (2021) Arsenic contamination of groundwater: a global synopsis with focus on the Indian Peninsula. Geosci Front 12(3):101079

    Article  CAS  Google Scholar 

  • Sharma I (2020) Bioremediation techniques for polluted environment: concept, advantages, limitations, and prospects. In: Murillo-Tovar MA et al (eds) Trace metals in the environment-new approaches and recent advances. IntechOpen, London

    Google Scholar 

  • Sharma RK, Archana G (2016) Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Appl Soil Ecol 107:66–78

    Article  Google Scholar 

  • Singh P, Borthakur A, Singh R, Bhadouria R, Singh VK, Devi P (2021) A critical review on the research trends and emerging technologies for arsenic decontamination from water. Groundw Sustain Dev 14:100607

    Article  Google Scholar 

  • Sinha B, Bhattacharyya K, Giri PK, Sarkar S (2011) Arsenic contamination in sesame and possible mitigation through organic interventions in the lower Gangetic Plain of West Bengal, India. J Sci Food Agric 91(15):2762–2767

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Suprasanna P, D’souza SF (2012) Mechanisms of arsenic tolerance and detoxification in plants and their application in transgenic technology: a critical appraisal. Int J Phytorem 14(5):506–517

    Article  CAS  Google Scholar 

  • Stolz JE, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  CAS  PubMed  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18(5):647–658

    Article  Google Scholar 

  • Ultra VU Jr, Nakayama A, Tanaka S, Kang Y, Sakurai K, Iwasaki K (2009) Potential for the alleviation of arsenic toxicity in paddy rice using amorphous iron-(hydr) oxide amendments. Soil Sci Plant Nutr 55(1):160–169

    Article  CAS  Google Scholar 

  • Upadhyay MK, Yadav P, Shukla A, Srivastava S (2018) Utilizing the potential of microorganisms for managing arsenic contamination: a feasible and sustainable approach. Front Environ Sci 6:24

    Article  Google Scholar 

  • USEPA (2007) Treatment technologies for site cleanup: annual status report. USEPA, Washington

    Google Scholar 

  • Vázquez S, Agha R, Granado A, Sarro MJ, Esteban E, Peñalosa JM, Carpena RO. (2006) Use of white lupin plant for phytostabilization of Cd and As polluted acid soil. Water Air Soil Polluti 177(1):349–365

    Article  CAS  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21(5):573

    Article  PubMed Central  CAS  Google Scholar 

  • Vezza ME, Olmos Nicotra MF, Agostini E, Talano MA (2020) Biochemical and molecular characterization of arsenic response from Azospirillum brasilense Cd, a bacterial strain used as plant inoculant. Environ Sci Pollut Res 27(2):2287–2300

    Article  CAS  Google Scholar 

  • Wan X, Li C, Parikh SJ (2020) Simultaneous removal of arsenic, cadmium, and lead from soil by iron-modified magnetic biochar. Environ Pollut 261:114157

  • Wang X, Ma LQ (2015) Recent advances in phytoremediation of arsenic-contaminated soils. In-situ remediation of arsenic-contaminated sites. Taylor & Francis Group, Milton Park, pp 69–86

    Google Scholar 

  • Wang D, Zhu S, Lu Y, Zeng R, Hu Z, Li X, Jie Y (2021) Phytoextraction of lead and arsenic from agricultural soils by different intercropping density of Boehmeria nivea (L.) and Pteris vittata (L.). Agron J 13(2):923–931

    Article  CAS  Google Scholar 

  • Waychunas GA, Kim CS, Banfield JF (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res 7(4):409–433

    Article  CAS  Google Scholar 

  • Wei Z, Van Le Q, Peng W, Yang Y, Yang H, Gu H, Lam SS, Sonne C (2021) A review on phytoremediation of contaminants in air, water and soil. J Hazard Mater 403:123658

    Article  CAS  PubMed  Google Scholar 

  • WHO (2011) Arsenic in Drinking-water. Background document for preparation of WHO guidelines for drinking-water quality. World Health Organization, Geneva

    Google Scholar 

  • Yadav KK, Gupta N, Kumar A, Reece LM, Singh N, Rezania S, Khan SA (2018) Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol Eng 120:274–298

    Article  Google Scholar 

  • Yang HC, Fu HL, Lin YF, Rosen BP (2012) Pathways of arsenic uptake and efflux. In: Benos DJ (ed) Current topics in membranes, vol 69. Academic Press, Cambridge, pp 325–358

    Google Scholar 

  • Zhang W, Zhang G, Liu C, Li J, Zheng T, Ma J, Wang L, Jiang J, Zhai X (2018) Enhanced removal of arsenite and arsenate by a multifunctional Fe-Ti-Mn composite oxide: photooxidation, oxidation and adsorption. Water Res 147:264–275

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

A.L. and P.B. wrote the main manuscript text; J.M. and S.S. reviewed and prepared the tables; S.B. and K.B. supervised and finalized the manuscript. All authors reviewed the final version of the manuscript and submitted in consensus.

Corresponding author

Correspondence to Aritri Laha.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laha, A., Sengupta, S., Bhattacharya, P. et al. Recent advances in the bioremediation of arsenic-contaminated soils: a mini review. World J Microbiol Biotechnol 38, 189 (2022). https://doi.org/10.1007/s11274-022-03375-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-022-03375-5

Keywords

Navigation