Skip to main content
Log in

The Influence of Cyclohexanone/Cyclohexanol on the Growth and Nitrogen Removal of Arthrospira platensis and the Cyclohexanone/Cyclohexanol Biotransformation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Arthrospira platensis is a candidate for removing nitrogen from caprolactam wastewater, but the concentrated cyclohexanone (CHN) and cyclohexanol (CHL) in the wastewater have an unknown effect on A. platensis growth. The aim of this study was to evaluate the feasibility of A. platensis for caprolactam wastewater treatment and obtain safe exposure concentrations of CHN and CHL. The biotransformation of CHN and CHL was investigated. Considering the changes of growth rate and pigment contents, the safe exposure concentrations of individual CHN and CHL were ≤ 800 and ≤ 400 mg L−1, respectively. For binary mixture, the safe exposure concentration was ≤ 200 + 100 mg L−1 CHN + CHL. Both chemicals induced decreased trichome length at all concentrations, but trichomes were large enough to be harvested efficiently by gravity filtration using filter membranes with a pore size of 25–40 μm under safe exposure. The nitrogen removal rate showed no difference in CHN and CHL treatment under safe exposure concentrations compared with the control, and the maximal nitrogen removal rate was 18.66 mg L−1 d−1. Besides, A. platensis catalyzed interconversion between CHN and CHL which preferred to convert CHN into CHL when chemicals coexisted. Results highlight the potential of A. platensis for the nitrogen removal from caprolactam wastewater when CHN and CHL were under the safe exposure concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barrocal, V. M., García-Cubero, M. T., González-Benito, G., & Coca, M. (2010). Production of biomass by Spirulina maxima using sugar beet vinasse in growth media. New Biotechnology, 27(6), 851–856.

    CAS  Google Scholar 

  • Bennett, A., & Bogorad, L. (1973). Complementary chromatic adaptation in a filamentous blue-green alga. The Journal of Cell Biology, 58(2), 419.

    CAS  Google Scholar 

  • Boussiba, S., & Richmond, A. E. (1980). C-phycocyanin as a storage protein in the blue-green alga Spirulina platensis. Archives of Microbiology, 125(1), 143–147.

    CAS  Google Scholar 

  • Brzostowicz, P. C., Gibson, K. L., Thomas, S. M., Blasko, M. S., & Rouvière, P. E. (2000). Simultaneous identification of two cyclohexanone oxidation genes from an environmental Brevibacterium isolate using mRNA differential display. Journal of Bacteriology, 182(15), 4241–4248.

    CAS  Google Scholar 

  • Cheng, S. M. E., Wu, W., Sun, B., Zhang, S., & Wang, E. (2003a). A method of cyclohexanone oxime’s gas phase rearrangement to caprolactam. China patent CN, 100497316.

  • Cheng, S. M. E., Wu, W., Sun, B., Zhang, S., & Wang, E. (2003b). A preparation method of zeolite catalyst with an MFI structure. China patent CN, 1600428.

  • Coca, M., Barrocal, V. M., Lucas, S., González-Benito, G., & García-Cubero, M. T. (2015). Protein production in Spirulina platensis biomass using beet vinasse-supplemented culture media. Food and Bioproducts Processing, 94, 306–312.

    CAS  Google Scholar 

  • Cuellar-Bermudez, S. P., Kilimtzidi, E., Devaere, J., Goiris, K., Gonzalez-Fernandez, C., Wattiez, R., et al. (2019). Harvesting of Arthrospira platensis with helicoidal and straight trichomes using filtration and centrifugation. Separation Science and Technology, 1–10.

  • Deniz, F., Saygideger, S., & Karaman, S. (2011). Response to copper and sodium chloride excess in Spirulina sp.(cyanobacteria). Bulletin of Environmental Contamination and Toxicology, 87(1), 11–15.

    CAS  Google Scholar 

  • Depraetere, O., Foubert, I., & Muylaert, K. (2013). Decolorisation of piggery wastewater to stimulate the production of Arthrospira platensis. Bioresource Technology, 148, 366–372.

    CAS  Google Scholar 

  • Donoghue, N. A., & Trudgill, P. W. (1975). Metabolism of Cyclohexanol by Acinetobacter NCIB-9871. European Journal of Biochemistry, 60(1), 1–7.

    CAS  Google Scholar 

  • EPA, U. S. E. P. A(2005). Insert reassement - Three exemptions from the requirement of a tolerance for cyclohexane (CAS# 110–82-7) and cyclohexanone (CAS# 108–94-1). https://www.epa.gov/.

  • Gedam, N., Neti, N. R., & Kashyap, S. M. (2014). Treatment of recalcitrant caprolactam wastewater using electrooxidation and ozonation. CLEAN – Soil, Air, Water, 42(7), 932–938.

    CAS  Google Scholar 

  • Gupta, S. K., & Bux, F. (2019). Application of microalgae in wastewater treatment: Springer.

    Google Scholar 

  • Gupta, P., Lawrence, W., Turner, J., & Autian, J. (1979). Toxicological aspects of cyclohexanone. Toxicology and Applied Pharmacology, 49(3), 525–533.

    CAS  Google Scholar 

  • Hasegawa, Y., Tsujimoto, H., Obata, H., & Tokuyama, T. (1992). The metabolism of cyclohexanol by Exophiala jeanselmei. Bioscience, Biotechnology, and Biochemistry, 56(8), 1319–1320.

    CAS  Google Scholar 

  • Havel, J., & Weuster-Botz, D. (2006). Comparative study of cyanobacteria as biocatalysts for the asymmetric synthesis of chiral building blocks. Engineering in Life Sciences, 6(2), 175–179.

    CAS  Google Scholar 

  • INCHEM, International programme on chemical safety (IPCS) (1994). Cyclohexanone (Screening Information Data Set - SIDs). http://www.inchem.org/documents/sids/sids/108941.pdf.

  • Kim, C.-J., Jung, Y.-H., & Oh, H.-M. (2007). Factors indicating culture status during cultivation of Spirulina (Arthrospira) platensis. The Journal of Microbiology, 45(2), 122–127.

    CAS  Google Scholar 

  • Kosaric, N., Nguyen, H., & Bergougnou, M. (1974). Growth of Spirulina maxima algae in effluents from secondary waste-water treatment plants. Biotechnology and Bioengineering, 16(7), 881–896.

    CAS  Google Scholar 

  • Li, P., & Gao, K. (2008). Effects of solar UV and visible radiations on the spiral structure and orientation of Arthrospira (Spirulina) platensis (Cyanophyta). Phycologia, 47(6), 573–579.

    Google Scholar 

  • López-Pacheco, I. Y., Carrillo-Nieves, D., Salinas-Salazar, C., Silva-Núñez, A., Arévalo-Gallegos, A., Barceló, D., et al. (2019). Combination of nejayote and swine wastewater as a medium for Arthrospira maxima and Chlorella vulgaris production and wastewater treatment. Science of the Total Environment, 676, 356–367.

    Google Scholar 

  • Lu, C., & Vonshak, A. (2002). Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiologia Plantarum, 114(3), 405–413.

    CAS  Google Scholar 

  • Magnusson, M., Heimann, K., Quayle, P., & Negri, A. P. (2010). Additive toxicity of herbicide mixtures and comparative sensitivity of tropical benthic microalgae. Marine Pollution Bulletin, 60(11), 1978–1987.

    CAS  Google Scholar 

  • Markou, G., Chatzipavlidis, I., & Georgakakis, D. (2012). Cultivation of Arthrospira (Spirulina) platensis in olive-oil mill wastewater treated with sodium hypochlorite. Bioresource Technology, 112, 234–241.

    CAS  Google Scholar 

  • Márquez-Rocha, F. J. (1999). Reassessment of the bioenergetic yield of Arthrospira platensis using continuous culture. World Journal of Microbiology and Biotechnology, 15(2), 235–238.

    Google Scholar 

  • Maxwell, G. R. (2004). Caprolactam. In G. R. Maxwell (Ed.), Synthetic nitrogen products: a practical guide to the products and processes (pp. 373–390). Boston, MA: Springer US.

    Google Scholar 

  • Murray, J. R., Scheikowski, T. A., & MacRae, I. C. (1974). Utilization of cyclohexanone and related substances by a Nocardia sp. Antonie Van Leeuwenhoek, 40(1), 17–24.

    CAS  Google Scholar 

  • Musser, M. T. (2011). Cyclohexanol and cyclohexanone. Ullmann's Encyclopedia of Industrial Chemistry.

    Google Scholar 

  • Nakamura, K., Yamanaka, R., Tohi, K., & Hamada, H. (2000). Cyanobacterium-catalyzed asymmetric reduction of ketones. Tetrahedron Letters, 41(35), 6799–6802.

    CAS  Google Scholar 

  • OECD 201. (2011). Freshwater alga and cyanobacteria, growth inhibition test. OECD guidelines for the testing of chemicals, section, 2, 25.

    Google Scholar 

  • Ogato, T., & Kifle, D. (2014). Morphological variability of Arthrospira (Spirulina) fusiformis (Cyanophyta) in relation to environmental variables in the tropical soda lake Chitu, Ethiopia. Hydrobiologia, 738(1), 21–33.

    CAS  Google Scholar 

  • Ong, C. N., Sia, G. L., Chia, S. E., Phoon, W. H., & Tan, K. T. (1991). Determination of cyclohexanol in urine and its use in environmental monitoring of cyclohexanone exposure. Journal of Analytical Toxicology, 15(1), 13–16.

    CAS  Google Scholar 

  • Oswald, W. J., & Gotaas, H. B. (1957). Photosynthesis in sewage treatment. Transactions of the American Society of Civil Engineers, 122(1), 73–105.

    Google Scholar 

  • Park, J., Craggs, R., & Shilton, A. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102(1), 35–42.

    CAS  Google Scholar 

  • Pollard, D., Telari, K., Lane, J., Humphrey, G., McWilliams, C., Nidositko, S., et al. (2006). Asymmetric reduction of α, β-unsaturated ketone to (R) allylic alcohol by Candida chilensis. Biotechnology and Bioengineering, 93(4), 674–686.

    CAS  Google Scholar 

  • Rafiqul, I., Hassan, A., Sulebele, G., Orosco, C., Roustaian, P., & Jalal, K. (2003). Salt stress culture of blue green algae Spirulina fusiformis. Pakistan Journal of Biological Sciences, 6(7), 648–650.

    Google Scholar 

  • Sengupta, D., Naik, D., & Reddy, A. R. (2015). Plant aldo-keto reductases (AKRs) as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense: a structure-function update. Journal of Plant Physiology, 179, 40–55.

    CAS  Google Scholar 

  • Silva, E., Rajapakse, N., & Kortenkamp, A. (2002). Something from “nothing” − eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environmental Science & Technology, 36(8), 1751–1756.

    CAS  Google Scholar 

  • Simon, R. D. (1973). Measurement of the cyanophycin granule polypeptide contained in the blue-green alga Anabaena cylindrica. Journal of Bacteriology, 114(3), 1213–1216.

    CAS  Google Scholar 

  • Soeprobowati, T. R., & Hariyati, R. (2017). The phycoremediation of textile wastewater discharge by Chlorella pyrenoidosa H. Chick, Arthrospira platensis Gomont, and Chaetoceros calcitrans (Paulson) H. Takano. Aquaculture, Aquarium, Conservation & Legislation, 10(3), 640–651.

    Google Scholar 

  • Straathof, A. J. J. (2003). Auxiliary phase guidelines for microbial biotransformations of toxic substrate into toxic product. Biotechnology Progress, 19(3), 755–762.

    CAS  Google Scholar 

  • Sundaram, S., & Soumya, K. (2011). Study of physiological and biochemical alterations in cyanobacterium under organic stress. American Journal of Plant Physiology, 6(1), 1–16.

    Google Scholar 

  • Van Eykelenburg, C. (1979). The ultrastructure of Spirulina platensis in relation to temperature and light intensity. Antonie Van Leeuwenhoek, 45(3), 369–390.

    Google Scholar 

  • Vonshak, A. (2002). Spirulina platensis (arthrospira): physiology, cell-biology and biotechnology: CRC press.

    Google Scholar 

  • Wen, X., Tao, H., Peng, X., Wang, Z., Ding, Y., Xu, Y., et al. (2019). Sequential phototrophic–mixotrophic cultivation of oleaginous microalga Graesiella sp. WBG-1 in a 1000 m2 open raceway pond. Biotechnology for Biofuels, 12(1), 27.

    Google Scholar 

  • Wu, H., Gao, K., Villafañe, V. E., Watanabe, T., & Helbling, E. W. (2005). Effects of solar UV radiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis. Applied and Environmental Microbiology, 71(9), 5004–5013.

    CAS  Google Scholar 

  • Yalcinkaya, T., Uzilday, B., Ozgur, R., Turkan, I., & Mano, J. i. (2019). Lipid peroxidation-derived reactive carbonyl species (RCS): their interaction with ROS and cellular redox during environmental stresses. Environmental and Experimental Botany, 165, 139–149.

    CAS  Google Scholar 

  • Yoshizako, F., Nishimura, A., & Chubachi, M. (1992). Microbial reduction of cyclohexanone by Chlorella pyrenoidosa chick. Journal of Fermentation and Bioengineering, 74(6), 395–397.

    CAS  Google Scholar 

  • Yoshizako, F., Nishimura, A., & Chubachi, M. (1994). Identification of algal transformation products from alicyclic ketones. Journal of Fermentation and Bioengineering, 77(2), 144–147.

    CAS  Google Scholar 

  • Yoshizako, F., Ogino, M., Nishimura, A., Chubachi, M., & Horii, T. (1995). Biotransformation of cyclic β-keto esters by Chlorella pyrenoidosa Chick. Journal of Fermentation and Bioengineering, 79(2), 141–145.

    CAS  Google Scholar 

  • Yoshizako, F., Nishimura, A., Chubachi, M., & Kirihata, M. (1996). Microbial reduction of 2-norbornanone by Chlorella. Journal of Fermentation and Bioengineering, 82(6), 601–603.

    CAS  Google Scholar 

  • Yoshizako, F., Kuramoto, T., Nishimura, A., & Chubachi, M. (1998). Asymmetric reduction of methyl 3-oxopentanoate by Chlorella. Journal of Fermentation and Bioengineering, 85(4), 439–442.

    CAS  Google Scholar 

  • Zong, B., Sun, B., Cheng, S., Mu, X., Yang, K., Zhao, J., et al. (2017). Green production technology of the monomer of nylon-6: caprolactam. Engineering, 3(3), 379–384.

    Google Scholar 

Download references

Funding

This work was supported by the SINOPEC Technology Development Program (Grant NO. 21807).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobin Wen.

Ethics declarations

Conmpeting Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 5281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, X., Li, Y. et al. The Influence of Cyclohexanone/Cyclohexanol on the Growth and Nitrogen Removal of Arthrospira platensis and the Cyclohexanone/Cyclohexanol Biotransformation. Water Air Soil Pollut 231, 331 (2020). https://doi.org/10.1007/s11270-020-04672-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04672-1

Keywords

Navigation