Skip to main content

Advertisement

Log in

Recent Development and Future Aspects: Nano-Based Drug Delivery System in Cancer Therapy

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The rapid advancement of nanotechnology in the production of nanomedicine agents holds enormous promise for improving cancer therapy techniques. Nanomedicine products offer the possibility of developing complex targeting approaches as well as multifunctionality. Nanotechnology has been examined for the detection of extracellular cancer biomarkers and cancer cells, as well as in vivo imaging, sensitive and selective, accuracy, and multiplexed detection capacity. In fact, nanoparticles have the potential to not only address the limitations of traditional cancer diagnosis and treatment, but also to open up entirely new possibilities and develop cutting-edge technology for tumour detection and treatment. Nano carriers are used to increase target tumour cell specificity and delivery capability to the tumour site, enhancing therapy efficacy while reducing unwanted side effects. Nanocarriers that respond to exogenous or endogenous stimuli have emerged as a promising alternative to target drug delivery. In this review intervention of nanoparticle system for cancer types like Lung cancer, Breast cancer, Melanoma, Colorectal cancer, Bladder cancer are discussed. Further focused on the advancement of nanocarriers for cancer diagnosis and treatment. The critical review takes deeper insight on nanocarrier-based cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhen Li, Tan S, Shuan L, Qiang S, Wang K (2017) Cancer drug delivery in the nano era: an overview and perspectives. Oncol Rep. https://doi.org/10.3892/or.2017.5718

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pavitra E, Dariya B, Srivani G, Kang S-M, Alam A, Sudhir P-R, Kamal MA, Raju GSR, Han Y-K, Lakkakula BVKS, Nagaraju GP, Huh YS (2019) Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2019.06.017

    Article  PubMed  Google Scholar 

  3. Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2(2):85–120

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res Int 15:103–122

    Google Scholar 

  5. Rizvi SAA, Saleh AM (2018) Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 26(1):64–70

    Article  PubMed  Google Scholar 

  6. Abel EE, Poonga PRJ, Panicker SG (2016) Characterization and in vitro studies on anticancer, antioxidant activity against colon cancer cell line of gold nanoparticles capped with Cassia tora SM leaf extract. Appl Nanosci 6:121–129

    Article  ADS  CAS  Google Scholar 

  7. Rajasree S, Immanuel ETNJ, LewisOscar F, Ponnuchamy K, Sabarathinam S, Arivalagan P (2019) Chitosan nanopolymers: an overview of drug delivery against cancer. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.02.060

    Article  Google Scholar 

  8. Tang J-Q, Hou X-Y, Yang C-S, Li Y-X, Xin Y, Guo W-W, Wei Z-P, Liu Y-Q, Jiang G (2017) Recent developments in nanomedicine for melanoma treatment. Int J Cancer 141:646–653

    Article  CAS  PubMed  Google Scholar 

  9. Panzarini E, Inguscio V, Tenuzzo BA (2013) Nanomaterials and autophagy: new insights in cancer treatment. Cancers 5:296–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shah SA, Majeed A, Shafique MA, Rashid K, Awan S-U (2014) Cell viability study of thermo-responsive core-shell superparamagnetic nanoparticles for multimodal cancer therapy. Appl Nanosci 4:227–232

    Article  ADS  CAS  Google Scholar 

  11. Naz M, Nasiri N, Ikram M, Nafees M, Qureshi MZ, Ali S, Tricoli A (2017) Eco-friendly biosynthesis, anticancer drug loading and cytotoxic effect of capped Ag-nanoparticles against breast cancer. Appl Nanosci 7:793–802

    Article  ADS  CAS  Google Scholar 

  12. Neubert RHH (2011) Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur J Pharm Biopharm 77(1):1–2

    Article  CAS  PubMed  Google Scholar 

  13. ud Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumours. Int J Nanomed 12:7291–7309

    Article  CAS  Google Scholar 

  14. Chauhan VP, Jain RK (2013) Strategies for advancing cancer nanomedicine. Nat Mater 12(11):958–962

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu D, Yang F, Xiong F, Gu N (2016) The smart drug delivery system and its clinical potential. Theranostics 6(9):1306–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Prakashkumar N, Thenmozhi R, Nooruddin T, Rajasree S, Arivalagan P, Suganthy N (2020) Polyherbal drug loaded starch nanoparticles as promising drug delivery system: antimicrobial, antibiofilm and neuroprotective studies. Process Biochem. https://doi.org/10.1016/j.procbio.2020.01.026

    Article  Google Scholar 

  17. Erdogan O, Abbak M, Demirbolat GM, Birtekocak F, Aksel M, Pasa S, Cevik O (2019) Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: the characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS ONE 14(6):e0216496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prabhu R, Ashik MM, Anjali R, Archunan G, Prabhu NM, Pugazhendhi A, Suganthy N (2019) Ecofriendly one pot fabrication of methyl gallate@ZIF-L nanoscale hybrid as pH responsive drug delivery system for lung cancer therapy. Process Biochem. https://doi.org/10.1016/j.procbio.2019.06.015

    Article  Google Scholar 

  19. Minna JD, Roth JA, Gazdar AF (2002) Focus on lung cancer. Cancer Cell 1:49–52

    Article  CAS  PubMed  Google Scholar 

  20. Girard L, Zochbauer-Muller S, Virmani AK, Gazdar AF, Minna JD (2000) Genome-wide allelotyping of lung cancer identifies new regions of allelic loss, differences between small cell lung cancer and non-small cell lung cancer, and loci clustering. Cancer Res 60:4894–4906

    CAS  PubMed  Google Scholar 

  21. Key TJ, Verkasalo PK, Banks E (2001) Epidemiology of breast cancer. Lancet Oncol 2(3):133–140

    Article  CAS  PubMed  Google Scholar 

  22. Houghton AN, Polsky D (2002) Focus on melanoma. Cancer Cell 2(4):275–278

    Article  CAS  PubMed  Google Scholar 

  23. Polsky D, Cordon-Cardo C, Houghton A (2001) Molecular biology of melanoma. In: Mendelson (ed) The molecular basis of cancer. Saunders Company, Philadelphia

    Google Scholar 

  24. Vijayasaradhi S, Xu Y, Bouchard B, Houghton AN (1995) Intracellular sorting and targeting of melanosomal membrane proteins: identification of signals for sorting of the human brown locus protein. J Cell Biol 130:807–820

    Article  CAS  PubMed  Google Scholar 

  25. Parkin DM, Bray F, Ferlay J, Pisani P (2002) Global cancer statistics. CA Cancer J Clin 55:74–108

    Article  Google Scholar 

  26. Parkin DM (2004) International Variation. Oncogene 23:6329–6340. https://doi.org/10.1038/sj.onc.1207726

  27. Center MM, Jemal A, Ward E (2009) International trends in colorectal cancer incidence rates. Cancer Epidemiol Biomarkers Prev 18:1688–1694

    Article  PubMed  Google Scholar 

  28. Marmol I, Sanchez-de-Diego C, Dieste AP, Cerrada E, Yoldi MJR (2017) Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci 18(1):197

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kaufman DS, Shipley WU, Feldman AS (2009) Bladder cancer. Lancet 374(9685):239–249

    Article  CAS  PubMed  Google Scholar 

  30. Singh R, Prasad A, Kumar B, Kumari S, Sahu RK, Hedau S (2022) Potential of dual drug delivery systems: MOF as hybrid nanocarrier for dual drug delivery in cancer treatment. ChemistrySelect. https://doi.org/10.1002/slct.202201288

    Article  Google Scholar 

  31. Zhou Y, Liyanage PY, Devadoss D, Guevara LRR, Cheng L, Graham RM, Chand HS, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Leblanc RM (2019) Nontoxic amphiphilic carbon dots as promising drug nanocarriers across the blood–brain barrier and inhibitors of β-amyloid. Nanoscale 11(46):22387–22397

    Article  CAS  PubMed  Google Scholar 

  32. Mintz KJ, Zhou Y, Leblanc RM (2019) Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale 11:4634–4652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Han X, Jing Z, Wu W, Zou B, Peng Z, Ren P, Wikramanayake A, Lu Z, Leblanc RM (2017) Biocompatible and blood–brain barrier permeable carbon dots for inhibition of Aβ fibrillation and toxicity, and BACE1 activity. Nanoscale 9:12862–12866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ankita D, Ashish B, Narang RK (2018) Nanoparticles as carriers for drug delivery in cancer. Artif Cells Nanomed Biotechnol. https://doi.org/10.1080/21691401.2018.1457039

    Article  Google Scholar 

  35. Hofheinz RD, Gnad-Vogt SU, Beyer U (2005) Liposomal encapsulated anti-cancer drugs. Anticancer Drugs 16:691–707

    Article  CAS  PubMed  Google Scholar 

  36. Wu J, Liu Q, Lee RJ (2006) A folate receptor-targeted liposomal formulation for paclitaxel. Int J Pharm 316:148–153

    Article  CAS  PubMed  Google Scholar 

  37. Huang J, Zhong XD, Wang LY, Yang LL, Mao H (2012) Improving the magnetic resonance imaging contrast and detection methods with engineered magnetic nanoparticles. Theranostics 2:86

    Article  PubMed  PubMed Central  Google Scholar 

  38. Laurent S, Dutz S, Hafeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on supermagnetic iron oxide nanoparticles. Adv Colloid Interface Sci. https://doi.org/10.1016/j.cis.2011.04.003

    Article  PubMed  Google Scholar 

  39. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Engineered nanoparticles for biomolecular imaging. Adv Drug Deliv Rev 63:24

    Article  CAS  PubMed  Google Scholar 

  40. Aziliz H, Thanh NT, Kim MS, May L, Cyrille B, Alexander D, Michael MD (2016) Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale 8:12152–12161

    Article  Google Scholar 

  41. Aslam H, Shukrullah S, Naz MY, Fatima H, Hussain H, Ullah S, Assiri MA (2022) Current and future perspectives of multifunctional magnetic nanoparticles based controlled drug delivery systems. J Drug Delivery Sci Technol 67:102946

    Article  CAS  Google Scholar 

  42. Krishnan KM (2010) Biomedical nanomagnetics: a Spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chichel A, Skowronek J, Kubaszewska M, Kanikowski M (2007) Hyperthermia—description of a method and a review of clinical applications. Rep Pract Oncol Radiother 12:267–275

    Article  Google Scholar 

  44. Harmon BV, Takano YS, Winterford CM, Gobe GC (1991) The role of apoptosis in the response of cells and tumours to mild hyperthermia. Int J Radiat Biol 59:489–501

    Article  CAS  PubMed  Google Scholar 

  45. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide 523 nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma 524 multiforme. Neurooncol 103:317–324

    Article  Google Scholar 

  46. Kralj S, Potrc T, Kocbek P, Marchesan S, Makovec D (2017) Design and fabrication of magnetically responsive nanocarriers for drug delivery. Curr Med Chem 24:454–469

    Article  CAS  PubMed  Google Scholar 

  47. Mahmoud AN, Mentias A, Elgendy AY, Qazi A, Barakat AF, Saad M, Mohsen A, Abuzaid A, Mansoor H, Mojadidi MK, Elgendy IY (2018) Migraine and the risk of cardiovascular and cerebrovascular events: a meta-analysis of 16 cohort studies including 1 152 407 subjects. BMJ open 27;8(3):e020498. https://doi.org/10.1136/bmjopen-2017-020498

  48. Samira N, Malaekeh-Nikouei B (2020) Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J Drug Delivery Sci Technol 55:101458

    Article  Google Scholar 

  49. Abrishami M, Mahmoudi A, Mosallaei N, Vakili Ahrari Roodi M, Malaekeh Nikouei B (2016) Solid lipid nanoparticles improve the diclofenac availability in vitreous after intraocular injection. Int J Drug Deliv. https://doi.org/10.1155/2016/1368481

    Article  Google Scholar 

  50. Liu D, Liu C, Zou W, Zhang N (2010) Enhanced gastrointestinal absorption of N 3-O-toluylfluorouracil by cationic solid lipid nanoparticles. J Nanoparticle Res 12:975–984

    Article  ADS  CAS  Google Scholar 

  51. Kim CH, Lee SG, Kang MJ (2017) Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. J Pharm Investig 47:203–227

    Article  CAS  Google Scholar 

  52. Xu L, Wang X, Liu Y, Yang G, Falconer RJ, Zhao CX (2022) Lipid nanoparticles for drug delivery. Adv NanoBiomed Res 2(2):2100109

    Article  CAS  Google Scholar 

  53. Yaghmur A, Glatter O (2009) Characterization and potential applications of nanostructured aqueous dispersions. Adv Colloid Interface Sci 147:333–342

    Article  PubMed  Google Scholar 

  54. Talluri SV, Kuppusamy G, Karri VVSR, Tummala S, Madhunapantula SV (2016) Lipid Based nanocarriers for breast cancer treatment—comprehensive review. Drug Delivery 23:1291–1305

    Article  CAS  PubMed  Google Scholar 

  55. Pearson RM, Sunoqrot S, Hsu H-j, Bae JW, Hong S (2012) Dendritic nanoparticles: the next generation of nanocarriers. Ther Delivery 3:941–959

    Article  CAS  Google Scholar 

  56. Palmerston Mendes L, Pan J, Torchilin VP (2017) Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22(9):1401

    Article  PubMed  PubMed Central  Google Scholar 

  57. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumouritropic accumulation of proteins and the antitumour agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  59. Zhu J, Shi X (2013) Dendrimer-based nanodevices for targeted drug delivery applications. J Mater Chem B 1:4199–4211

    Article  CAS  PubMed  Google Scholar 

  60. Zhu J, Xiong Z, Shen M, Shi X (2015) Encapsulation of doxorubicin within multifunctional gadolinium-loaded dendrimer nanocomplexes for targeted theranostics of cancer cells. RSC Adv 5:30286–30296

    Article  ADS  Google Scholar 

  61. Husseini GA, Pitt WG (2008) Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Rev 60:1137–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hartley GS (1936) Aqueous solutions of paraffin-chain salts; a study in micelle formation. Hermann & Cie, Paris

    Google Scholar 

  63. Zhou Q, Zhang L, Yang T, Wu H (2018) Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomed 13:2921–2942

    Article  CAS  Google Scholar 

  64. Jones M, Leroux J (1999) Polymeric micelles—a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48(2):101–111

    Article  CAS  PubMed  Google Scholar 

  65. Greish K (2010) Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Cancer Nanotechnol: Methods Protocols. 25–37

  66. Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA (2008) Nonsmall cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83:584–594

    Article  PubMed  Google Scholar 

  67. Chowdhuri AR, Singh T, Ghosh SK, Sahu SK (2016) Carbon dots embedded magnetic nanoparticles @Chitosan @metal organic framework as a nanoprobe for pH sensitive targeted anticancer drug delivery. ACS Appl Mater Interfaces 8(26):16573–16583. https://doi.org/10.1021/acsami.6b03988

    Article  CAS  PubMed  Google Scholar 

  68. Lu K, Aung T, Guo N, Weichselbaum R, Lin W (2018) Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv Mater. https://doi.org/10.1002/adma.201707634

    Article  PubMed  PubMed Central  Google Scholar 

  69. Feng S, Zhang X, Shi D, Wang Z (2020) Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: a critical review. Front Chem Sci Eng. https://doi.org/10.1007/s11705-020-1927-8

    Article  Google Scholar 

  70. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(5865):939–943

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Moggach SA, Bennett TD, Cheetham AK (2009) The effect of pressure on zif-8: Increasing pore size with pressure and the formation of a high-pressure phase at 1.47 gpa. Angew Chem Int Ed 48(38):7087–7089

    Article  CAS  Google Scholar 

  72. Fairen-Jimenez D, Moggach SA, Wharmby MT, Wright PA, Parsons S, Duren T (2011) Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J Am Chem Soc 133(23):8900–8902

    Article  CAS  PubMed  Google Scholar 

  73. Wang F, Tan YX, Yang H, Zhang HX, Kang Y, Zhang J (2011) A new approach towards tetrahedral imidazolate frameworks for high and selective CO2 uptake. Chem Commun 47(20):5828–5830

    Article  CAS  Google Scholar 

  74. Youlden DR, Cramb SM, Baade PD (2008) The international epidemiology of lung cancer: geographical distribution and secular trends. J Thorac Oncol 3:819–831

    Article  PubMed  Google Scholar 

  75. Asim FM, Aquib Md, Haleem KD, Sana G, Anam A, Muhammad I, Parikshit B, Ahmed KM, Masood AM, Bo W (2019) Nanocarrier-mediated co-delivery systems for lung cancer therapy: recent developments and prospects. Environ Chem Lett 17:1565–1583

    Article  Google Scholar 

  76. Jaracz S, Chen J, Kuznetsova LV, Ojima I (2005) Recent advances in tumour-targeting anticancer drug conjugates. Bioorg Med Chem 13:5043–5054

    Article  CAS  PubMed  Google Scholar 

  77. Sung JC, Pulliam BL, Edwards DA (2007) Nanoparticles for drug delivery to the lungs. Trends Biotechnol 25:563–570

    Article  CAS  PubMed  Google Scholar 

  78. Ganesh S, Iyer AK, Gattacceca F, Morrissey DV, Amiji MM (2013) In vivo biodistribution of siRNA and cisplatin administered using CD44-targeted hyaluronic acid nanoparticles. J Controll Release 172:699–706

    Article  CAS  Google Scholar 

  79. Jabbari S, Ghamkhari A, Javadzadeh Y, Salehi R, Davaran S (2018) Doxorubicin and chrysin combination chemotherapy with novel pH-responsive poly[(lactide-co-glycolic acid)-block-methacrylic acid] nanoparticle. J Drug Deliv Sci Technol 46:129–137

    Article  CAS  Google Scholar 

  80. Otto DP, Otto A, de Villiers MM (2015) Diferences in physicochemical properties to consider in the design, evaluation and choice between microparticles and nanoparticles for drug delivery. Expert Opin Drug Deliv 12:763–777

    Article  CAS  PubMed  Google Scholar 

  81. Wang Y, Zhang H, Hao J, Li B, Li M, Xiuwen W (2016) Lung cancer combination therapy: co-delivery of paclitaxel and doxorubicin by nanostructured lipid carriers for synergistic effect. Drug Delivery 23:1398–1403

    Article  CAS  PubMed  Google Scholar 

  82. Medeiros GC, Bergmann A, Aguiar SS, Thuler LCS (2015) Análise dos determinantes que influenciam o tempo para o início do tratamento de mulheres com câncer de mama no Brasil. Cad Saúde Pública 31(6):1269–1282

    Article  PubMed  Google Scholar 

  83. Ma Y, Bai RK, Trieu R, Wong LJC (2010) Mitochondrial dysfunction in human breast cancer cells and their transmitochondrial cybrids. Biochim Biophys Acta - Bioenerg 1797:29–37

    Article  CAS  Google Scholar 

  84. de Oliveira GT, de Souza SG, Moysés AM, Panobianco MS, de Almeida AM (2014) Incidence and management of chemotherapy-induced nausea and vomiting in women with breast cancer. Revista Gaúcha de Enfermagem 35(3):117–123

    Article  Google Scholar 

  85. Oshiro-Júnior JA, Camila R, Hanck-Silva G, Sato MR, Alves RC, Eloy JO, Chorilli M (2020) Stimuli-responsive drug delivery nanocarriers in the treatment of breast cancer. Curr Med Chem 27(15):2494–2513

    Article  PubMed  Google Scholar 

  86. Allinen M, Beroukhim R, Cai L, Brennan C, LahtiDomenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K (2004) Molecular characterization of the tumour microenvironment in breast cancer. Cancer Cell 6(1):17–32

    Article  CAS  PubMed  Google Scholar 

  87. Overchuk M, Zheng G (2018) Overcoming obstacles in the tumour microenvironment: recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials 156:217–237

    Article  CAS  PubMed  Google Scholar 

  88. Ahmed H, Gomte SS, Prabakaran A, Agrawal M, Alexander A (2022) Biomedical applications of mesoporous silica nanoparticles as a drug delivery carrier. J Drug Delivery Sci Technol. https://doi.org/10.1016/j.jddst.2022.103729

    Article  Google Scholar 

  89. Rawat M, Singh D, Saraf S, Saraf S (2006) Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull 29(9):1790–1798

    Article  CAS  PubMed  Google Scholar 

  90. Sharma A, Jain N, Sareen R (2013) Nanocarriers for diagnosis and targeting of breast cancer. BioMed Res Int. https://doi.org/10.1155/2013/960821

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lee CC, MacKay JA, Frechet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23(12):1517–1526

    Article  CAS  PubMed  Google Scholar 

  92. Siegel R, Ma J, Zou Z (2014) Cancer statistics. Cancer J Clin 64:9–29

    Article  Google Scholar 

  93. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics. Cancer J Clin 66:7–30

    Article  Google Scholar 

  94. Marta Batus S, Waheed CR (2013) Optimal management of metastatic melanoma: current strategies and future directions. Am J Clin Dermatol 14:179–194

    Article  PubMed  PubMed Central  Google Scholar 

  95. Mouawad R, Sebert M, Michels J (2010) Treatment for metastatic malignant melanoma: old drugs and new strategies. Crit Rev Oncol Hematol 74:27–39

    Article  PubMed  Google Scholar 

  96. Radomska A, Leszczyszyn J, Radomski MW (2016) The nanopharmacology and nanotoxicology of nanomaterials: new opportunities and challenges. Adv Clin Exp Med 25:151–162

    Article  PubMed  Google Scholar 

  97. Klein A, Baumler W, Landthaler M (2011) Laser thermal therapy of benign skin tumours: review and update. Int J Hyperthermia 27:762–770

    Article  PubMed  Google Scholar 

  98. Kanapathipillai M, Brock A, Ingber DE (2014) Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumour microenvironment. Adv Drug Deliv Rev 79:107–118

    Article  PubMed  Google Scholar 

  99. Kang L, Gao Z, Huang W (2015) Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment. Acta Pharm Sin B 5:169–175

    Article  PubMed  PubMed Central  Google Scholar 

  100. Brannon-Peppas L, Blanchette JO (2012) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 64:206–212

    Article  Google Scholar 

  101. Bolkestein M, de Blois E, Koelewijn SJ (2016) Investigation of factors determining the enhanced permeability and retention effect in subcutaneous xenografts. J Nucl Med 57:601–607

    Article  CAS  PubMed  Google Scholar 

  102. Mogosanu GD, Grumezescu AM, Bejenaru C (2016) Polymeric protective agents for nanoparticles in drug delivery and targeting. Int J Pharm 510:419–429

    Article  CAS  PubMed  Google Scholar 

  103. Pavitra E, Begum D, Gowru S, Sung-Min K, Afroz A, Sudhir P-R, Amjad KM, Rama Raju G, Seeta H-K, Lakkakula KS, Nagaraju BV, Purnachandra G, Suk HY (2019) Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Semin Cancer Biol 69:293–306

    Article  PubMed  Google Scholar 

  104. Yallapu MM, Jaggi M, Chauhan SC (2013) Curcumin nanomedicine: a road to cancer therapeutics. Curr Pharm Des 19(11):1994–2010

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Sara JD, Kaur J, Khodadadi R, Rehman M, Lobo R, Chakrabarti S, Herrmann J, Lerman A, Grothey A (2018) 5-Fluorouracil and cardiotoxicity: a review. Ther Adv Med Oncol 10:1–18

    Article  Google Scholar 

  106. Escalante J, McQuade RM, Stojanovska V, Nurgali K (2017) Impact of chemotherapy on gastrointestinal functions and the enteric nervous system. Maturitas 105:23–29

    Article  PubMed  Google Scholar 

  107. Wang Y, Bansal V, Zelikin AN, Caruso F (2008) Templated synthesis of single-component polymer capsules and their application in drug delivery. Nano Lett 8(6):1741–1745

    Article  ADS  PubMed  Google Scholar 

  108. Ariga K, Ji Q, Hill JP, Bando Y, Aono M (2012) Forming nanomaterials as layered functional structures toward materials nanoarchitectonics. NPG Asia Mater 4(5):e1–e17

    Article  Google Scholar 

  109. Sivakumar S, Bansal V, Cortez C, Chong SF, Zelikin AN, Caruso F (2009) Surfactant-free degradable, monodisperse polymer-encapsulated emulsions as anticancer drug carriers. Adv Mater 21(18):1820–1824

    Article  CAS  Google Scholar 

  110. Kun Yu, Meiping L, Hong D, Xiao H (2020) Targeted drug delivery systems for bladder cancer therapy. J Drug Delivery Sci Technol 56:101535

    Article  Google Scholar 

  111. Kirkali Z, Chan T, Manoharan M, Algaba F, Busch C, Cheng L, Kiemeney L, Martin Kriegmair R, Montironi WM, Murphy IA, Sesterhenn MT, Weider J (2005) Bladder cancer: epidemiology, staging and grading, and diagnosis. Urology 66:4–34

    Article  PubMed  Google Scholar 

  112. Shen Z, Tong Shen M, Wientjes G, Michael A, O’Donnell JLS (2008) Intravesical treatments of bladder cancer: review. Pharm Res 25:1500–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Jain KK (2020) An overview of drug delivery systems. Methods Mol Biol 2059:1–54

    Article  CAS  PubMed  Google Scholar 

  114. Yang Lu, Zhang E, Yang J, Cao Z (2018) Strategies to improve micelle stability for drug delivery. Nano Res 11:4985–4998

    Article  PubMed  PubMed Central  Google Scholar 

  115. Bo Hu, Yan Y, Tong F, Long Xu, Zhu J, Guangtao Xu, Shen R (2018) Lumbrokinase/paclitaxel nanoparticle complex: potential therapeutic applications in bladder cancer. Int J Nanomed 13:3625–3640

    Article  Google Scholar 

  116. Lee S-J, Kim SW, Chung H, Park YT, Choi YW, Cho Y-H, Yoon MS (2005) Bioadhesive drug delivery system using glyceryl monooleate for the intravesical administration of paclitaxel. Chemotherapy 51:311–318

    Article  CAS  PubMed  Google Scholar 

  117. Ho BN, Claire M, Pfeffer ATK, singh, (2017) Update on nanotechnology-based drug delivery systems in cancer treatment. Anticancer Res 37:5975–5981

    CAS  PubMed  Google Scholar 

  118. Imran M, Jha LA, Hasan N, Shrestha J, Pangeni R, Parvez N, Paudel KR (2022) “Nanodecoys”—future of drug delivery by encapsulating nanoparticles in natural cell membranes. Int J Pharm 621:121790

    Article  CAS  PubMed  Google Scholar 

  119. Vasir JK, Reddy MK, Labhasetwar VD (2005) Nanosystems in drug targeting: opportunities and challenges. Curr Nanosci 1:47–64

    Article  ADS  CAS  Google Scholar 

  120. Erdoğan Ö, Paşa S, Demirbolat GM, Birtekocak F, Abbak M, Çevik Ö (2023) Synthesis, characterization, and anticarcinogenic potent of green-synthesized zinc oxide nanoparticles via Citrus aurantium aqueous peel extract. Inorg Nano-Metal Chem. https://doi.org/10.1080/24701556.2023.2240768

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology for their kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azhagu Saravana Babu Packirisamy.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest regarding this investigation.

Additional information

Publisher's Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajendran, S., Ravi, S.N., Nair, V.M. et al. Recent Development and Future Aspects: Nano-Based Drug Delivery System in Cancer Therapy. Top Catal 67, 203–217 (2024). https://doi.org/10.1007/s11244-023-01893-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-023-01893-6

Keywords

Navigation