Skip to main content

Advertisement

Log in

Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Targeted drug delivery systems using nanocarriers for anticancer drugs have been investigated for over several decades. Among the many nanocarrier systems, lipid-based nanocarriers such as liposomes, solid lipid nanoparticles, and nanostructured lipid carriers have afforded attention as a carrier system to improve the efficacy of anticancer drugs. Recent efforts have focused on cancer cell-specific drug delivery through the functionalization of the surface of lipid-based nanocarriers with various ligands such as targeting moieties, cell-penetrating peptides, and cell-penetrating homing peptides to overcome non-selectivity, minimize side effects, and enhance antitumor efficacy. However, the use of ligand modification has been limited because the nanocarriers were easily recognized by the mononuclear phagocyte system and thus rapidly removed from the blood circulation. To achieve prolonged systemic circulation, nanocarriers were further modified with protective polymers such as polyethylene glycol (PEG). Unexpectedly, this presented a PEG dilemma, as the interaction of ligands with the target was hindered and induced poor cellular uptake. Recently, stimuli-sensitive cleavage of the PEG coat, following recognition of the cancer cell microclimate, such as low pH, redox-potential, and over-expressed enzymes, was established to solve this problem. This review presents a comprehensive overview on the current state of surface-modified lipid-based nanocarriers for the improved delivery of anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Accardo A, Salsano G, Morisco A, Aurilio M, Parisi A, Maione F, Morelli G (2012) Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed by cancer cells: a potential theranostic agent. Int J Nanomedicine 7:2007–2017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akhtar MJ, Ahamed M, Alhadlaq HA, Alrokayan SA, Kumar S (2014) Targeted anticancer therapy: overexpressed receptors and nanotechnology. Clin Chim Acta 436:78–92

    Article  CAS  PubMed  Google Scholar 

  • Al-Ahmady ZS, Chaloin O, Kostarelos K (2014) Monoclonal antibody-targeted, temperature-sensitive liposomes: in vivo tumor chemotherapeutics in combination with mild hyperthermia. J Control Release 196:332–343

    Article  CAS  PubMed  Google Scholar 

  • Amin M, Badiee A, Jaafari MR (2013) Improvement of pharmacokinetic and antitumor activity of PEGylated liposomal doxorubicin by targeting with N-methylated cyclic RGD peptide in mice bearing C-26 colon carcinomas. Int J Pharm 458:324–333

    Article  CAS  PubMed  Google Scholar 

  • Arpicco S, Lerda C, Dalla Pozza E, Costanzo C, Tsapis N, Stella B, Palmieri M (2013) Hyaluronic acid-coated liposomes for active targeting of gemcitabine. Eur J Pharm Biopharm 85:373–380

    Article  CAS  PubMed  Google Scholar 

  • Awada A, Bondarenko IN, Bonneterre J, Nowara E, Ferrero JM, Bakshi AV, CT4002 Study Group (2014) A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann Oncol 25:824–831

    Article  CAS  PubMed  Google Scholar 

  • Banerjee R, Tyagi P, Li S, Huang L (2004) Anisamide-targeted stealth liposomes: a potent carrier for targeting doxorubicin to human prostate cancer cells. Int J Cancer 112:693–700

    Article  CAS  PubMed  Google Scholar 

  • Bao A, Phillips WT, Goins B, Zheng X, Sabour S, Natarajan M, Ross Woolley F, Zavaleta C, Otto RA (2006) Potential use of drug carried-liposomes for cancer therapy via direct intratumoral injection. Int J Pharm 316:162–169

    Article  CAS  PubMed  Google Scholar 

  • Bashyal S, Noh G, Keum T, Choi YW, Lee S (2016) Cell penetrating peptides as an innovative approach for drug delivery; then, present and the future. J Pharm Invest 46:205–220

    Article  CAS  Google Scholar 

  • Benhabbour SR, Sheardown H, Adronov A (2008) Protein resistance of PEG-functionalized dendronized surfaces: effect of PEG molecular weight and dendron generation. Macromolecules 41:4817–4823

    Article  CAS  Google Scholar 

  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Article  CAS  PubMed  Google Scholar 

  • Bidlingmaier S, He J, Wang Y, An F, Feng J, Barbone D, Liu B (2009) Identification of MCAM/CD146 as the target antigen of a human monoclonal antibody that recognizes both epithelioid and sarcomatoid types of mesothelioma. Cancer Res 69:1570–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas S, Deshpande PP, Perche F, Dodwadkar NS, Sane SD, Torchilin VP (2013a) Octa-arginine-modified pegylated liposomal doxorubicin: an effective treatment strategy for non-small cell lung cancer. Cancer Lett 335:191–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas S, Dodwadkar NS, Deshpande PP, Parab S, Torchilin VP (2013b) Surface functionalization of doxorubicin-loaded liposomes with octa-arginine for enhanced anticancer activity. Eur J Pharm Biopharm 84:517–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondì ML, Craparo EF, Giammona G, Cervello M, Azzolina A, Diana P, Martorana A, Cirrincione G (2007) Nanostructured lipid carriers-containing anticancer compounds: preparation, characterization, and cytotoxicity studies. Drug Deliv 14:61–67

    Article  PubMed  CAS  Google Scholar 

  • Brannon-Peppas L, Blanchette JO (2012) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 64:206–212

    Article  Google Scholar 

  • Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4:437–447

    Article  CAS  PubMed  Google Scholar 

  • Bruun J, Larsen TB, Jølck RI, Eliasen R, Holm R, Gjetting T, Andresen TL (2015) Investigation of enzyme-sensitive lipid nanoparticles for delivery of siRNA to blood-brain barrier and glioma cells. Int J Nanomedicine 10:5995–6008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai L, Wang X, Wang W, Qiu N, Wen J, Duan X, Wei Y (2012) Peptide ligand and PEG-mediated long-circulating liposome targeted to FGFR overexpressing tumor in vivo. Int J Nanomedicine 7:4499–4510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai D, Gao W, He B, Dai W, Zhang H, Wang X, Zhang Q (2014) Hydrophobic penetrating peptide PFVYLI-modified stealth liposomes for doxorubicin delivery in breast cancer therapy. Biomaterials 35:2283–2294

    Article  CAS  PubMed  Google Scholar 

  • Chang M, Lu S, Zhang F, Zuo T, Guan Y, Wei T, Lin G (2015) RGD-modified pH-sensitive liposomes for docetaxel tumor targeting. Colloids Surf B Biointerf 129:175–182

    Article  CAS  Google Scholar 

  • Chen DB, Yang TZ, Wang-Liang LU, Zhang Q (2001) In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem Pharm Bull 49:1444–1447

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Sen J, Bathula SR, Yang Q, Fittipaldi R, Huang L (2009) Novel cationic lipid that delivers siRNA and enhances therapeutic effect in lung cancer cells. Mol Pharm 6:696–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Jiang X, Huang Y, Zhang C, Ping Q (2010a) pH-sensitive mPEG-Hz-cholesterol conjugates as a liposome delivery system. J Bioact Compat Polym 25:527–542

    Article  CAS  Google Scholar 

  • Chen H, Tang L, Qin Y, Yin Y, Tang J, Tang W, He Q (2010b) Lactoferrin-modified procationic liposomes as a novel drug carrier for brain delivery. Eur J Pharm Sci 40:94–102

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang X, Wang Y, Hu J, Yang L, Xiao W, Fu A, Cai L, Li X, Ye X, Liu Y, Wu W, Shao X, Mao Y, Yang Lwei Y, Chen L (2010c) Improved tumor-targeting drug delivery and therapeutic efficacy by cationic liposome modified with truncated bFGF peptide. J Controll Release 145:17–25

    Article  CAS  Google Scholar 

  • Chen D, Liu W, Shen Y, Mu H, Zhang Y, Liang R, Fu F (2011a) Effects of a novel pH-sensitive liposome with cleavable esterase-catalyzed and pH-responsive double smart mPEG lipid derivative on ABC phenomenon. Int J Nanomedicine 6:2053–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Qin Y, Zhang Q, Jiang W, Tang L, Liu J, He Q (2011b) Lactoferrin modified doxorubicin-loaded procationic liposomes for the treatment of gliomas. Eur J Pharm Sci 44:164–173

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Chen H, Cui S, Xue B, Tian J, Achilefu S, Gu Y (2012) Glucosamine derivative modified nanostructured lipid carriers for targeted tumor delivery. J Mater Chem 22:5770–5783

    Article  CAS  Google Scholar 

  • Cheng L, Huang FZ, Cheng LF, Zhu YQ, Hu Q, Li L, Chen DW (2014) GE11-modified liposomes for non-small cell lung cancer targeting: preparation, ex vitro and in vivo evaluation. Int J Nanomedicine 9:921–935

    Article  PubMed  PubMed Central  Google Scholar 

  • Chono S, Li SD, Conwell CC, Huang L (2008) An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J Control Release 131:64–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou LY, Ming K, Chan WC (2011) Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 40:233–245

    Article  CAS  PubMed  Google Scholar 

  • Copolovici DM, Langel K, Eriste E, Langel U (2014) Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8:1972–1994

    Article  CAS  PubMed  Google Scholar 

  • Dai W, Jin W, Zhang J, Wang X, Wang J, Zhang X, Zhang Q (2012) Spatiotemporally controlled co-delivery of anti-vasculature agent and cytotoxic drug by octreotide-modified stealth liposomes. Pharm Res 29:2902–2911

    Article  CAS  PubMed  Google Scholar 

  • Dams ET, Laverman P, Oyen WJ, Storm G, Scherphof GL, van der Meer JW, Boerman OC (2000) Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther 292:1071–1079

    CAS  PubMed  Google Scholar 

  • De La Rica R, Aili D, Stevens MM (2012) Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev 64:967–978

    Article  CAS  Google Scholar 

  • Demeule M, Currie JC, Bertrand Y, Che C, Nguyen T, Regina A, Beliveau R (2008) Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector Angiopep-2. J Neurochem 106:1534–1544

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Sun D, Wang GL, Yang HG, Xu HF, Chen JH, Wang ZQ (2015) An efficient PEGylated liposomal nanocarrier containing cell-penetrating peptide and pH-sensitive hydrazone bond for enhancing tumor-targeted drug delivery. Int J Nanomedicine 10:6199–6214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51:691–744

    CAS  PubMed  Google Scholar 

  • Du J, Li L (2016) Which one performs better for targeted lung cancer combination therapy: pre-or post-bombesin-decorated nanostructured lipid carriers? Drug Deliv 23:1799–1809

    Article  CAS  PubMed  Google Scholar 

  • Du J, Lane LA, Nie S (2015) Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J Control Release 219:205–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360

    Article  CAS  PubMed  Google Scholar 

  • Fillebeen C, Descamps L, Dehouck MP, Fenart L, Benaı̈ssa M, Spik G, Pierce A (1999) Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem 274:7011–7017

    Article  CAS  PubMed  Google Scholar 

  • Fishman MN, Elsayed Y, Damjanov N, Steinberg JL, Mahany JJ, Nieves JA, Sherman JW (2004) Phase I study of liposome entrapped paclitaxel (LEP-ETU) in patients with advanced cancer. J Clin Oncol 22:2110–2110

    Article  Google Scholar 

  • Fundarò A, Cavalli R, Bargoni A, Vighetto D, Zara GP, Gasco MR (2000) Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after iv administration to rats. Pharmacol Res 42:337–343

    Article  PubMed  CAS  Google Scholar 

  • Furuhata M, Izumisawa T, Kawakami H, Toma K, Hattori Y, Maitani Y (2009) Decaarginine-PEG-liposome enhanced transfection efficiency and function of arginine length and PEG. Int J Pharm 371:40–46

    Article  CAS  PubMed  Google Scholar 

  • Gaillard PJ, Appeldoorn CC, Dorland R, van Kregten J, Manca F, Vugts DJ, van Tellingen O (2014) Pharmacokinetics, brain delivery, and efficacy in brain tumor-bearing mice of glutathione pegylated liposomal doxorubicin (2B3-101). PloS ONE 9:e82331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao J, Sun J, Li H, Liu W, Zhang Y, Li B, Guo Y (2010) Lyophilized HER2-specific PEGylated immunoliposomes for active siRNA gene silencing. Biomaterials 31:2655–2664

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Liu W, Xia Y, Li W, Sun J, Chen H, Deng L (2011) The promotion of siRNA delivery to breast cancer overexpressing epidermal growth factor receptor through anti-EGFR antibody conjugation by immunoliposomes. Biomaterials 32:3459–3470

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Yu Y, Zhang Y, Song J, Chen H, Li W, Qian W, Deng L, Kou G, Chen J, Guo Y (2012) EGFR-specific PEGylated immunoliposomes for active siRNA delivery in hepatocellular carcinoma. Biomaterials 33:270–282

    Article  CAS  PubMed  Google Scholar 

  • Garg A, Tisdale AW, Haidari E, Kokkoli E (2009) Targeting colon cancer cells using PEGylated liposomes modified with a fibronectin-mimetic peptide. Int J Pharm 366:201–210

    Article  CAS  PubMed  Google Scholar 

  • Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 56:1194–1198

    CAS  PubMed  Google Scholar 

  • Gill PS, Wernz J, Scadden DT, Cohen P, Mukwaya GM, von Roenn JH, Rarick MU (1996) Randomized phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi’s sarcoma. J Clin Oncol 14:2353–2364

    Article  CAS  PubMed  Google Scholar 

  • Ginn C, Khalili H, Lever R, Brocchini S (2014) PEGylation and its impact on the design of new protein-based medicines. Future Med Chem 6:1829–1846

    Article  CAS  PubMed  Google Scholar 

  • Gordon AN, Fleagle JT, Guthrie D, Parkin DE, Gore ME, Lacave AJ (2001) Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol 19:3312–3322

    Article  CAS  PubMed  Google Scholar 

  • Goutayer M, Dufort S, Josserand V, Royère A, Heinrich E, Vinet F, Texier I (2010) Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging. Eur J Pharm Biopharm 75:137–147

    Article  CAS  PubMed  Google Scholar 

  • Gullotti E, Yeo Y (2009) Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm 6:1041–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, He B, Jin H, Zhang H, Dai W, Zhang L, Zhang Q (2014) Targeting efficiency of RGD-modified nanocarriers with different ligand intervals in response to integrin αvβ3 clustering. Biomaterials 35:6106–6117

    Article  CAS  PubMed  Google Scholar 

  • Gupta B, Torchilin VP (2007) Monoclonal antibody 2C5-modified doxorubicin-loaded liposomes with significantly enhanced therapeutic activity against intracranial human brain U-87 MG tumor xenografts in nude mice. Cancer Immunol Immunother 56:1215–1223

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Zhang Y, Li D, Chen Y, Sun J, Kong F (2014) Transferrin-modified nanostructured lipid carriers as multifunctional nanomedicine for codelivery of DNA and doxorubicin. Int J Nanomedicine 9:4107–4116

    PubMed  PubMed Central  Google Scholar 

  • Hatakeyama H, Akita H, Kogure K, Oishi M, Nagasaki Y, Kihira Y, Harashima H (2007) Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther 14:68–77

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama H, Akita H, Ito E, Hayashi Y, Oishi M, Nagasaki Y, Baba Y (2011) Systemic delivery of siRNA to tumors using a lipid nanoparticle containing a tumor-specific cleavable PEG-lipid. Biomaterials 32:4306–4316

    Article  CAS  PubMed  Google Scholar 

  • He Y, Zhang L, Song C (2010) Luteinizing hormone-releasing hormone receptor-mediated delivery of mitoxantrone using LHRH analogs modified with PEGylated liposomes. Int J Nanomedicine 5:697–705

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95:4607–4612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong RL, Huang CJ, Tseng YL, Pang VF, Chen ST, Liu JJ, Chang FH (1999) Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice. Clin Cancer Res 5:3645–3652

    CAS  PubMed  Google Scholar 

  • Hou C, Tu Z, Mach R, Kung HF, Kung MP (2006) Characterization of a novel iodinated sigma-2 receptor ligand as a cell proliferation marker. Nucl Med Biol 33:203–209

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Katti PS, Gu Z (2014) Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 6:12273–12286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Immordino ML, Brusa P, Arpicco S, Stella B, Dosio F, Cattel L (2003) Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing docetaxel. J Control Release 91:417–429

    Article  CAS  PubMed  Google Scholar 

  • Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1:297–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida T, Maeda R, Ichihara M, Mukai Y, Motoki Y, Manabe Y, Kiwada H (2002) The accelerated clearance on repeated injection of pegylated liposomes in rats: laboratory and histopathological study. Cell Mol Biol Lett 7:286–286

    PubMed  Google Scholar 

  • Iwamaru Y, Shimizu Y, Imamura M, Murayama Y, Endo R, Tagawa Y, Yokoyama T (2008) Lactoferrin induces cell surface retention of prion protein and inhibits prion accumulation. J Neurochem 107:636–646

    Article  CAS  PubMed  Google Scholar 

  • Iwase Y, Maitani Y (2011) Octreotide-targeted liposomes loaded with CPT-11 enhanced cytotoxicity for the treatment of medullary thyroid carcinoma. Mol Pharm 8:330–337

    Article  CAS  PubMed  Google Scholar 

  • Iyer AK, Su Y, Feng J, Lan X, Zhu X, Liu Y, Liu B (2011) The effect of internalizing human single chain antibody fragment on liposome targeting to epithelioid and sarcomatoid mesothelioma. Biomaterials 32:2605–2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain A, Agarwal A, Majumder S, Lariya N, Khaya A, Agrawal H, Agrawal GP (2010) Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J Control Release 148:359–367

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Kesharwani P, Garg NK, Jain A, Jain SA, Jain AK, Katare OP (2015) Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloids Surf B Biointerf 134:47–58

    Article  CAS  Google Scholar 

  • Jiang J, Yang SJ, Wang JC, Yang LJ, Xu ZZ, Yang T, Zhang Q (2010) Sequential treatment of drug-resistant tumors with RGD-modified liposomes containing siRNA or doxorubicin. Eur J Pharm Biopharm 76:170–178

    Article  CAS  PubMed  Google Scholar 

  • Joshi MD, Müller RH (2009) Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm 71:161–172

    Article  CAS  PubMed  Google Scholar 

  • Kang MJ, Park SH, Kang MH, Park MJ, Choi YW (2013) Folic acid-tethered Pep-1 peptide-conjugated liposomal nanocarrier for enhanced intracellular drug delivery to cancer cells: conformational characterization and in vitro cellular uptake evaluation. Int J Nanomedicine 8:1155–1165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang MH, Park MJ, Yoo HJ, Lee SG, Kim SR, Yeom DW, Kang MJ, Choi YW (2014) RIPL peptide (IPLVVPLRRRRRRRRC)-conjugated liposomes for enhanced intracellular drug delivery to hepsin-expressing cancer cells. Eur J Pharm Biopharm 87:489–499

    Article  CAS  PubMed  Google Scholar 

  • Kang MH, Yoo HJ, Kwon YH, Yoon HY, Lee SG, Kim SR, Choi YW (2015) Design of multifunctional liposomal nanocarriers for folate receptor-specific intracellular drug delivery. Mol Pharm 12:4200–4213

    Article  CAS  PubMed  Google Scholar 

  • Khajavinia A, Varshosaz J, Dehkordi AJ (2012) Targeting etoposide to acute myelogenous leukemia cells using nanostructured lipid carriers coated with transferrin. Nanotechnology 23:1–13

    Article  CAS  Google Scholar 

  • Khalid MN, Simard P, Hoarau D, Dragomir A, Leroux JC (2006) Long circulating poly (ethylene glycol)-decorated lipid nanocapsules deliver docetaxel to solid tumors. Pharm Res 23:752–758

    Article  CAS  PubMed  Google Scholar 

  • Kibria G, Hatakeyama H, Ohga N, Hida K, Harashima H (2011) Dual-ligand modification of PEGylated liposomes shows better cell selectivity and efficient gene delivery. J Control Release 153:141–148

    Article  CAS  PubMed  Google Scholar 

  • Kim IY, Kang YS, Lee DS, Park HJ, Choi EK, Oh YK, Kim JS (2009) Antitumor activity of EGFR targeted pH-sensitive immunoliposomes encapsulating gemcitabine in A549 xenograft nude mice. J Control Release 140:55–60

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Thompson DH, Jang HS, Chung YJ, Van den Bossche J (2013) pH-responsive biodegradable assemblies containing tunable phenyl-substituted vinyl ethers for use as efficient gene delivery vehicles. ACS Appl Mater Interfaces 5:5648–5658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko AH, Tempero MA, Shan YS, Su WC, Lin YL, Dito E, Chen LT (2013) A multinational phase 2 study of nanoliposomal irinotecan sucrosofate (PEP02, MM-398) for patients with gemcitabine-refractory metastatic pancreatic cancer. Br J Cancer 109:920–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Ishida T, Okada Y, Ise S, Harashima H, Kiwada H (2007) Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int J Pharm 329:94–102

    Article  CAS  PubMed  Google Scholar 

  • Koren E, Apte A, Jani A, Torchilin VP (2012) Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J Control Release 160:264–273

    Article  CAS  PubMed  Google Scholar 

  • Koshkaryev A, Piroyan A, Torchilin VP (2012) Increased apoptosis in cancer cells in vitro and in vivo by ceramides in transferrin-modified liposomes. Cancer Biol Ther 13:50–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuai R, Yuan W, Li W, Qin Y, Tang J, Yuan M, He Q (2011) Targeted delivery of cargoes into a murine solid tumor by a cell-penetrating peptide and cleavable poly (ethylene glycol) comodified liposomal delivery system via systemic administration. Mol Pharm 8:2151–2161

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni PS, Haldar MK, Nahire RR, Katti P, Ambre AH, Muhonen WW, Shrivastava DK (2014) MMP-9 responsive PEG cleavable nanovesicles for efficient delivery of chemotherapeutics to pancreatic cancer. Mol Pharm 11:2390–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon YH, Shin TH, Jang MH, Yoon HY, Kang MH, Kang MJ, Choi YW (2017) Surface-modification of RIPL peptide-conjugated liposomes to achieve steric stabilization and pH sensitivity. J Nanosci Nanotechnol 17:1008–1017

    Google Scholar 

  • Lammers T, Kiessling F, Hennink WE, Storm G (2012) Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 161:175–187

    Article  CAS  PubMed  Google Scholar 

  • Landesman-Milo D, Goldsmith M, Ben-Arye SL, Witenberg B, Brown E, Leibovitch S, Peer D (2013) Hyaluronan grafted lipid-based nanoparticles as RNAi carriers for cancer cells. Cancer Lett 334:221–227

    Article  CAS  PubMed  Google Scholar 

  • Leamon CP, Reddy JA (2004) Folate-targeted chemotherapy. Adv Drug Deliv Rev 56(8):1127–1141

    Article  CAS  PubMed  Google Scholar 

  • Li SD, Huang L (2010) Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J Control Release 145:178–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Ding L, Xu Y, Wang Y, Ping Q (2009a) Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm 373:116–123

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang D, Zhang J, Pan W (2009b) Preparation and pharmacokinetics of docetaxel based on nanostructured lipid carriers. J Pharm Pharmacol 61:1485–1492

    Article  CAS  PubMed  Google Scholar 

  • Li X, Tian T, Zhang J, Zhao X, Chen X, Jiang Y, Wang D, Pan W (2011) In vitro and in vivo evaluation of folate receptor-targeting amphiphilic copolymer modified liposomes loaded with docetaxel. Int J Nanomedicine 6:1167–1184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Lee RJ, Yu K, Bi Y, Qi Y, Sun Y, Teng L (2016) Delivery of siRNA using lipid nanoparticles modified with cell penetrating peptide. ACS Appl Mater Interfaces 8:26613–26621

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Zhang N (2010) Cancer chemotherapy with lipid-based nanocarriers. Crit Rev Ther Drug Carrier Syst 27(:):371–417

    CAS  PubMed  Google Scholar 

  • Liu D, Liu F, Liu Z, Wang L, Zhang N (2011) Tumor specific delivery and therapy by double-targeted nanostructured lipid carriers with anti-VEGFR-2 antibody. Mol Pharm 8:2291–2301

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Ran R, Chen J, Kuang Q, Tang J, Mei L, He Q (2014) Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. Biomaterials 35:4835–4847

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Mei L, Yu Q, Xu C, Qiu Y, Yang Y, Shi K, Zhang Q, Gao H, Zhang Z, He Q (2015) Multifunctional tandem peptide modified paclitaxel-loaded liposomes for the treatment of vasculogenic mimicry and cancer stem cells in malignant glioma. ACS Appl Mater Interfaces 7:16792–16801

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Li X, Xiao W, Lam KS (2016) Tumor-targeting peptides from combinatorial libraries. Adv Drug Deliv Rev. doi:10.1016/j.addr.2016.05.009

    Google Scholar 

  • Lozano N, Al-Ahmady ZS, Beziere NS, Ntziachristos V, Kostarelos K (2015) Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int J Pharm 482:2–10

    Article  CAS  PubMed  Google Scholar 

  • Luria-Pérez R, Helguera G, Rodríguez JA (2016) Antibody-mediated targeting of the transferrin receptor in cancer cells. Boletín Médico del Hospital Infantil de México 73:372–379

    Article  Google Scholar 

  • Madhankumar AB, Slagle-Webb B, Wang X, Yang QX, Antonetti DA, Miller PA, Sheehan JM, Connor JR (2009) Efficacy of interleukin-13 receptor–targeted liposomal doxorubicin in the intracranial brain tumor model. Mol Cancer Ther 8:648–654

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65:71–79

    Article  CAS  PubMed  Google Scholar 

  • Mamot C, Ritschard R, Vogel B, Dieterle T, Bubendorf L, Hilker C, Rochlitz C (2011) A phase I study of doxorubicin-loaded anti-EGFR immunoliposomes in patients with advanced solid tumors. J Clin Oncol 29:3029–3029

    Article  Google Scholar 

  • Mansour AM, Drevs J, Esser N, Hamada FM, Badary OA, Unger C, Kratz F (2003) A new approach for the treatment of malignant melanoma: enhanced antitumor efficacy of an albumin-binding doxorubicin prodrug that is cleaved by matrix metalloproteinase 2. Cancer Res 63:4062–4066

    CAS  PubMed  Google Scholar 

  • Marasco D, Perretta G, Sabatella M, Ruvo M (2008) Past and future perspectives of synthetic peptide libraries. Curr Protein Pept Sci 9:447–467

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K (2011) Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev 63:161–169

    Article  CAS  PubMed  Google Scholar 

  • Mattheolabakis G, Milane L, Singh A, Amiji MM (2015) Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J Drug Target 23:605–618

    Article  CAS  PubMed  Google Scholar 

  • McNeeley KM, Karathanasis E, Annapragada AV, Bellamkonda RV (2009) Masking and triggered unmasking of targeting ligands on nanocarriers to improve drug delivery to brain tumors. Biomaterials 30:3986–3995

    Article  CAS  PubMed  Google Scholar 

  • Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196

    Article  CAS  PubMed  Google Scholar 

  • Mei L, Fu L, Shi K, Zhang Q, Liu Y, Tang J, He Q (2014) Increased tumor targeted delivery using a multistage liposome system functionalized with RGD TAT and cleavable PEG. Int J Pharm 468:26–38

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Webster P, Davis ME (2004) PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol 83:97–111

    Article  CAS  PubMed  Google Scholar 

  • Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine 6:9–24

    Article  CAS  PubMed  Google Scholar 

  • Mo R, Gu Z (2016) Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater Today 19 :274–283

    Article  CAS  Google Scholar 

  • Mohammadi Ghalaei P, Varshosaz J, Sadeghi Aliabadi H (2014) Evaluating cytotoxicity of hyaluronate targeted solid lipid nanoparticles of etoposide on SK-OV-3 cells. J Drug Deliv 7:1–7

    Article  CAS  Google Scholar 

  • Müller RH, Radtke M, Wissing SA (2002a) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54:S131–S155

    Article  PubMed  Google Scholar 

  • Müller RH, Radtke M, Wissing SA (2002b) Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm 242:121–128

    Article  PubMed  Google Scholar 

  • Muthu MS, Kulkarni SA, Raju A, Feng SS (2012) Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials 33:3494–3501

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Kogure K, Futaki S, Harashima H (2007) Octaarginine-modified multifunctional envelope-type nano device for siRNA. J Control Release 11:360–367

    Article  CAS  Google Scholar 

  • Navarro G, Movassaghian S, Torchilin VP (2014) Multifunctional nanocarriers for tumor drug delivery and imaging In: Mitra AK (ed) Drug delivery, 1st edn. Jones & Bartlett learning, Burlington, pp 157–187

    Google Scholar 

  • Necas J, Bartosikova L, Brauner P, Kolar J (2008) Hyaluronic acid (hyaluronan): a review. Vet Med (Praha) 53 :397–411

    CAS  Google Scholar 

  • Negussie AH, Miller JL, Reddy G, Drake SK, Wood BJ, Dreher MR (2010) Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome. J Control Release 143:265–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oumzil K, Khiati S, Grinstaff MW, Barthélémy P (2011) Reduction-triggered delivery using nucleoside-lipid based carriers possessing a cleavable PEG coating. J Control Release 151:123–130

    Article  CAS  PubMed  Google Scholar 

  • Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  CAS  PubMed  Google Scholar 

  • Paliwal SR, Paliwal R, Mishra N, Mehta A, Vyas SP (2010) A novel cancer targeting approach based on estrone anchored stealth liposome for site-specific breast cancer therapy. Curr Cancer Drug Targets 10:343–353

    Article  CAS  PubMed  Google Scholar 

  • Paliwal SR, Paliwal R, Pal HC, Saxena AK, Sharma PR, Gupta PN, Vyas SP (2011) Estrogen-anchored pH-sensitive liposomes as nanomodule designed for site-specific delivery of doxorubicin in breast cancer therapy. Mol Pharm 9:176–186

    Article  PubMed  CAS  Google Scholar 

  • Pardeike J, Hommoss A, Müller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366:170–184

    Article  CAS  PubMed  Google Scholar 

  • Patel DK, Tripathy S, Nair SK, Kesharwani R (2013) Nanostructured lipid carrier (NLC) a modern approach for topical delivery: a review. World J Pharm Pharma Sci 2:921–938

    CAS  Google Scholar 

  • Perche F, Biswas S, Wang T, Zhu L, Torchilin VP (2014) Hypoxia targeted siRNA delivery. Angew Chem Int Ed Engl 53:3362–3366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qhattal HSS, Liu X (2011) Characterization of CD44-mediated cancer cell uptake and intracellular distribution of hyaluronan-grafted liposomes. Mol Pharm 8:1233–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Chen H, Yuan W, Kuai R, Zhang Q, Xie F, He Q (2011a) Liposome formulated with TAT-modified cholesterol for enhancing the brain delivery. Int J Pharm 419:85–95

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Chen H, Zhang Q, Wang X, Yuan W, Kuai R, Liu J (2011b) Liposome formulated with TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals. Int J Pharm 420:304–312

    Article  CAS  PubMed  Google Scholar 

  • Qu CY, Zhou M, Chen YW, Chen MM, Shen F, Xu LM (2015) Engineering of lipid prodrug-based, hyaluronic acid-decorated nanostructured lipid carriers platform for 5-fluorouracil and cisplatin combination gastric cancer therapy. Int J Nanomedicine 10:3911–3920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravar F, Saadat E, Gholami M, Dehghankelishadi P, Mahdavi M, Azami S, Dorkoosh FA (2016) Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation. J Control Release 229:10–22

    Article  CAS  PubMed  Google Scholar 

  • Reddy LH, Sharma RK, Chuttani K, Mishra AK, Murthy RR (2004) Etoposide-incorporated tripalmitin nanoparticles with different surface charge: formulation, characterization, radiolabeling, and biodistribution studies. AAPS J 6:55–64

    Article  PubMed Central  Google Scholar 

  • Remaut K, Lucas B, Braeckmans K, Demeester J, De Smedt SC (2007) Pegylation of liposomes favours the endosomal degradation of the delivered phosphodiester oligonucleotides. J Control Release 117:256–266

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez BL, Blando JM, Lansakara PD, Kiguchi Y, DiGiovanni J, Cui Z (2013) Antitumor activity of tumor-targeted RNA replicase-based plasmid that expresses interleukin-2 in a murine melanoma model. Mol Pharm 10:2404–2415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romberg B, Hennink WE, Storm G (2008) Sheddable coatings for long-circulating nanoparticles. Pharm Res 25:55–71

    Article  CAS  PubMed  Google Scholar 

  • Ross JS, Schenkein DP, Pietrusko R, Rolfe M, Linette GP, Stec J, Hortobagyi GN (2004) Targeted therapies for cancer 2004. Am J Clin Pathol 122:598–609

    Article  CAS  PubMed  Google Scholar 

  • Sakurai Y, Hatakeyama H, Sato Y, Hyodo M, Akita H, Ohga N, Harashima H (2014) RNAi-mediated gene knockdown and anti-angiogenic therapy of RCCs using a cyclic RGD-modified liposomal-siRNA system. J Control Release 173:110–118

    Article  CAS  PubMed  Google Scholar 

  • Sankhala KK, Mita AC, Adinin R, Wood L, Beeram M, Bullock S, Phan A (2009) A phase I pharmacokinetic (PK) study of MBP-426, a novel liposome encapsulated oxaliplatin. J Clin Oncol 27(:):2535

    Google Scholar 

  • Sanna V, Pala N, Sechi M (2014) Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine 9:467–483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scherphof GL, Dijkstra JAN, Spanjer HH, Derksen JT, Roerdink FH (1985) Uptake and intracellular processing of targeted and nontargeted liposomes by Rat Kupffer Cells in vivo and in vitro. Ann N Y Acad Sci 446:368–384

    Article  CAS  PubMed  Google Scholar 

  • Shan D, Li J, Cai P, Prasad P, Liu F, Rauth AM, Wu XY (2015) RGD-conjugated solid lipid nanoparticles inhibit adhesion and invasion of αvβ3 integrin-overexpressing breast cancer cells. Drug Deliv Transl Res 5:15–26

    Article  CAS  PubMed  Google Scholar 

  • Shao Z, Shao J, Tan B, Guan S, Liu Z, Zhao Z, Zhao J (2015) Targeted lung cancer therapy: preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA. Int J Nanomedicine 10:1223–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shehata T, Ogawara K, Higaki K, Kimura T (2008) Prolongation of residence time of liposome by surface-modification with mixture of hydrophilic polymers. Int J Pharm 359:272–279

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Shi S, Zhang Z, Gong T, Sun X (2015) Coating solid lipid nanoparticles with hyaluronic acid enhances antitumor activity against melanoma stem-like cells. Theranostics 5 :755–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi C, Gao F, Gao X, Liu Y (2015) A novel anti-VEGF165 monoclonal antibody-conjugated liposomal nanocarrier system: physical characterization and cellular uptake evaluation in vitro and in vivo. Biomed Pharmacother 69:191–200

    Article  CAS  PubMed  Google Scholar 

  • Shmeeda H, Tzemach D, Mak L, Gabizon A (2009) Her2-targeted pegylated liposomal doxorubicin: retention of target-specific binding and cytotoxicity after in vivo passage. J Control Release 136:155–160

    Article  CAS  PubMed  Google Scholar 

  • Shmeeda H, Amitay Y, Gorin Y, Tzemach D, Mak L, Ogorka J, Kumar S, Zhang JA, Gabizon A (2010) Delivery of zoledronic acid encapsulated in folate-targeted liposome results in potent in vitro cytotoxic activity on tumor cells. J Control Release 146:76–83

    Article  CAS  PubMed  Google Scholar 

  • Sinha R, Kim GJ, Nie S, Shin D (2006) Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 5:1909–1917

    Article  CAS  PubMed  Google Scholar 

  • Song S, Mao G, Du J, Zhu X (2016) Novel RGD containing, temozolomide-loading nanostructured lipid carriers for glioblastoma multiforme chemotherapy. Drug Deliv 23:1404–1408

    Article  CAS  PubMed  Google Scholar 

  • Srinivasarao M, Galliford CV, Low PS (2015) Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat Rev Drug Discov 14:203–219

    Article  CAS  PubMed  Google Scholar 

  • Steichen SD, Caldorera-Moore M, Peppas NA (2013) A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48:416–427

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Niu J, Xiao Y, Ping Q, Sun M, Huang A, Yuan D (2011) Effect of octreotide–polyethylene glycol (100) monostearate modification on the pharmacokinetics and cellular uptake of nanostructured lipid carrier loaded with hydroxycamptothecine. Mol Pharm 8:1641–1651

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Shi Y, Xiao Y, Sun M, Ping Q, Zong L, Chen Y (2013) Effect of octreotide surface density on receptor-mediated endocytosis in vitro and anticancer efficacy of modified nanocarrier in vivo after optimization. Int J Pharm 447:281–292

    Article  CAS  PubMed  Google Scholar 

  • Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Gao Y, Zhu Z, Wang H, Han C, Yang X, Pan W (2016) A systematic in vitro investigation on poly-arginine modified nanostructured lipid carrier: pharmaceutical characteristics, cellular uptake, mechanisms and cytotoxicity. Asian J Pharm Sci 12:51–58

    Article  Google Scholar 

  • Tang J, Zhang L, Fu H, Kuang Q, Gao H, Zhang Z, He Q (2014) A detachable coating of cholesterol-anchored PEG improves tumor targeting of cell-penetrating peptide-modified liposomes. Acta Pharm Sin B 4 :67–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Taratula O, Kuzmov A, Shah M, Garbuzenko OB, Minko T (2013) Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J Control Release 171:349–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavano L, Muzzalupo R (2016) Multi-functional vesicles for cancer therapy: the ultimate magic bullet. Colloids Surf B Biointerf 147:161–171

    Article  CAS  Google Scholar 

  • Temsamani J, Vidal P (2004) The use of cell-penetrating peptides for drug delivery. Drug Discov Today 9:1012–1019

    Article  CAS  PubMed  Google Scholar 

  • Terada T, Iwai M, Kawakami S, Yamashita F, Hashida M (2006) Novel PEG-matrix metalloproteinase-2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinoma-selective targeting. J Control Release 111:333–342

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2008) Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev 60:548–558

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2009) Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 71:431–444

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2014) Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 13:813–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trabulo S, Cardoso AL, Mano M, De Lima MCP (2010) Cell-penetrating peptides—mechanisms of cellular uptake and generation of delivery systems. Pharmaceuticals 3:961–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran TH, Choi JY, Ramasamy T, Truong DH, Nguyen CN, Choi HG, Kim JO (2014) Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinostat to CD44 overexpressing cancer cells. Carbohydr Polym 114:407–415

    Article  CAS  PubMed  Google Scholar 

  • Ucar E, Teksoz S, Ichedef C, Kilcar AY, Medine EI, Ari K, Unak P (2017) Synthesis, characterization and radiolabeling of folic acid modified nanostructured lipid carriers as a contrast agent and drug delivery system. Appl Radiat Isot 119:72–79

    Article  CAS  PubMed  Google Scholar 

  • Üner M (2006) Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie 61:375–386

    PubMed  Google Scholar 

  • Üner M, Yener G (2007) Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2:289–300

    PubMed  PubMed Central  Google Scholar 

  • Vllasaliu D, Fowler R, Stolnik S (2014) PEGylated nanomedicines: recent progress and remaining concerns. Expert Opin Drug Deliv 11:139–154

    Article  CAS  PubMed  Google Scholar 

  • Walkey CD, Olsen JB, Guo H, Emili A, Chan WC (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134:2139–2147

    Article  CAS  PubMed  Google Scholar 

  • Wan F, You J, Sun Y, Zhang XG, Cui FD, Du YZ, Yuan H, Hu FQ (2008) Studies on PEG-modified SLNs loading vinorelbine bitartrate (I): preparation and evaluation in vitro. Int J Pharm 359:104–110

    Article  CAS  PubMed  Google Scholar 

  • Wan Y, Han J, Fan G, Zhang Z, Gong T, Sun X (2013) Enzyme-responsive liposomes modified adenoviral vectors for enhanced tumor cell transduction and reduced immunogenicity. Biomaterials 34:3020–3030

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Su W, Liu Z, Zhou M, Chen S, Chen Y, Han Z (2012) CD44 antibody-targeted liposomal nanoparticles for molecular imaging and therapy of hepatocellular carcinoma. Biomaterials 33:5107–5114

    Article  CAS  PubMed  Google Scholar 

  • Wang RH, Cao HM, Tian ZJ, Jin B, Wang Q, Ma H, Wu J (2015) Efficacy of dual-functional liposomes containing paclitaxel for treatment of lung cancer. Oncol Rep 33:783–791

    CAS  PubMed  Google Scholar 

  • Webb BA, Chimenti M, Jacobson MP, Barber DL (2011) Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11:671–677

    Article  CAS  PubMed  Google Scholar 

  • Wei M, Xu Y, Zou Q, Tu L, Tang C, Xu T, Wu C (2012) Hepatocellular carcinoma targeting effect of PEGylated liposomes modified with lactoferrin. Eur J Pharm Sci 46:131–141

    Article  CAS  PubMed  Google Scholar 

  • Wicki A, Rochlitz C, Orleth A, Ritschard R, Albrecht I, Herrmann R, Mamot C (2012) Targeting tumor-associated endothelial cells: anti-VEGFR2 immunoliposomes mediate tumor vessel disruption and inhibit tumor growth. Clin Cancer Res 18:454–464

    Article  CAS  PubMed  Google Scholar 

  • Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 200:138–157

    Article  CAS  PubMed  Google Scholar 

  • Wissing SA, Kayser O, Müller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56:1257–1272

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Tang C, Yin C (2010) Folate-mediated solid–liquid lipid nanoparticles for paclitaxel-coated poly(ethylene glycol). Drug Dev Ind Pharm 36:439–448

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF (2013a) Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev 65:121–138

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Wang L, Xu HQ, Huang XE, Qian YD, Xiang J (2013b) Clinical comparison between paclitaxel liposome (Lipusu®) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pac J Cancer Prev 14:2591–2594

    Article  PubMed  Google Scholar 

  • Yang XY, Li YX, Li M, Zhang L, Feng LX, Zhang N (2013) Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett 334:338–345

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Yang T, Zhang W, Lu M, Ma X, Xiang G (2014a) In vitro and in vivo antitumor effects of folate-targeted ursolic acid Stealth liposome. J Agric Food Chem 62:2207–2215

    Article  CAS  PubMed  Google Scholar 

  • Yang ZZ, Li JQ, Wang ZZ, Dong DW, Qi XR (2014b) Tumor-targeting dual peptides-modified cationic liposomes for delivery of siRNA and docetaxel to gliomas. Biomaterials 35:5226–5239

    Article  CAS  PubMed  Google Scholar 

  • Ye P, Zhang W, Yang T, Lu Y, Lu M, Gai Y, Ma X, Xiang G (2014) Folate receptor-targeted liposomes enhanced the antitumor potency of imatinib through the combination of active targeting and molecular targeting. Int J Nanomedicine 9:2167–2178

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan L, Liu C, Chen Y, Zhang Z, Zhou L, Qu D (2013) Antitumor activity of tripterine via cell-penetrating peptide-coated nanostructured lipid carriers in a prostate cancer model. Int J Nanomedicine 8:4339–4350

    PubMed  PubMed Central  Google Scholar 

  • Yuan M, Qiu Y, Zhang L, Gao H, He Q (2016) Targeted delivery of transferrin and TAT co-modified liposomes encapsulating both paclitaxel and doxorubicin for melanoma. Drug Deliv 23:1171–1183

    CAS  PubMed  Google Scholar 

  • Zagar TM, Vujaskovic Z, Formenti S, Rugo H, Muggia F, O’Connor B, Straube W (2014) Two phase I dose-escalation/pharmacokinetics studies of low temperature liposomal doxorubicin (LTLD) and mild local hyperthermia in heavily pretreated patients with local regionally recurrent breast cancer. Int J Hyperthermia 30:285–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zara GP, Bargoni A, Cavalli R, Fundarò A, Vighetto D, Gasco MR (2002) Pharmacokinetics and tissue distribution of idarubicin- loaded solid lipid nanoparticles after duodenal administration to rats. J Pharm Sci 91:1324–1333

    Article  CAS  PubMed  Google Scholar 

  • Zeng F, Ju RJ, Li XT, Lu WL (2014) Advances in investigations on the mechanism of cancer multidrug resistance and the liposomes-based treatment strategy. J Pharm Invest 44:493–504

    Article  CAS  Google Scholar 

  • Zhang X, Gan Y, Gan L, Nie S, Pan W (2008a) PEGylated nanostructured lipid carriers loaded with 10- hydroxycamptothecin: an efficient carrier with enhanced anti- tumour effects against lung cancer. J Pharm Pharmacol 60:1077–1087

    Article  CAS  PubMed  Google Scholar 

  • Zhang XG, Miao J, Dai YQ, Du YZ, Yuan H, Hu FQ (2008b) Reversal activity of nanostructured lipid carriers loading cytotoxic drug in multi-drug resistant cancer cells. Int J Pharm 361:239–244

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Jin W, Wang X, Wang J, Zhang X, Zhang Q (2010) A novel octreotide modified lipid vesicle improved the anticancer efficacy of doxorubicin in somatostatin receptor 2 positive tumor models. Mol Pharm 7:1159–1168

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Guo S, Fan R, Yu M, Li F, Zhu C, Gan Y (2012) Dual-functional liposome for tumor targeting and overcoming multidrug resistance in hepatocellular carcinoma cells. Biomaterials 33:7103–7114

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang Y, Yang Y, Liu Y, Ruan S, Zhang Q, Gao H (2015) High tumor penetration of paclitaxel loaded pH sensitive cleavable liposomes by depletion of tumor collagen I in breast cancer. ACS Appl Mater Interfaces 7:9691–9701

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Deng C, Fu Y, Sun X, Gong T, Zhang Z (2016a) Repeated administration of hyaluronic acid coated liposomes with improved pharmacokinetics and reduced immune response. Mol Pharm 13:1800–1808

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Lu C, Zhang X, Li J, Jiang H (2016b) Targeted delivery of etoposide to cancer cells by folate-modified nanostructured lipid drug delivery system. Drug Deliv 23:1838–1845

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Wan Y, Elhissi A, Zhang Z, Sun X (2014) Targeted paclitaxel delivery to tumors using cleavable PEG-conjugated solid lipid nanoparticles. Pharm Res 31:2220–2233

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Kate P, Torchilin VP (2012) Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 6:3491–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Cheng L, Cheng L, Huang F, Hu Q, Li L, Chen D (2014) Folate and TAT peptide co-modified liposomes exhibit receptor-dependent highly efficient intracellular transport of payload in vitro and in vivo. Pharm Res 31:3289–3330

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2016R1A2B4011449). The authors also appreciate the scholarship given to Sang Gon Lee from the Health Fellowship Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Wook Choi.

Ethics declarations

Conflict of the interest

All authors (C.H. Kim, S.G. Lee, M.J. Kang, S. Lee, and Y.W. Choi) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C.H., Lee, S.G., Kang, M.J. et al. Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. Journal of Pharmaceutical Investigation 47, 203–227 (2017). https://doi.org/10.1007/s40005-017-0329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-017-0329-5

Keywords

Navigation