Skip to main content
Log in

Solvent-assisted investigation of NLO responses of 3,5-dihydroxybenzoic acid and pyrazine-2-carboxamide cocrystal

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In recent years, there has been a growing interest in cocrystals as potential materials for nonlinear optical (NLO) applications due to their enhanced optical properties compared to their individual components. Understanding the influence of solvent interactions on the NLO responses of cocrystals is crucial for the development of efficient optoelectronic devices. In this study, we investigate the solvent-assisted fast-switching behavior and the enhanced NLO responses of a cocrystal formed by 3,5-dihydroxybenzoic acid and pyrazine-2-carboxamide. The NLO responses vary across solvents, with linear polarizability < α0 > ranging from 4.36 electrostatic units (esu) in methanol to 11.98 in chloroform, and first hyperpolarizability (β0) from 0.21 esu in methanol to 7.44 esu in chloroform. The second hyperpolarizability γtot values range from 1.21 esu in toluene, dichloromethane (DCM), and methanol to 2.34 esu in the gaseous phase. Our research aims to elucidate the influence of solvent interactions on the NLO properties of this cocrystal, providing insights for potential applications in optoelectronic devices. We found that the cocrystal produced the steeper NLO response upon changing the solvent polarity. The comparison of the values in different solvents shows that chloroform has the highest < α0 > β0 values, indicating a strong response to the applied electric field. Meanwhile, methanol has the lowest < α0 > and β0 values, indicating a weaker response. The γtot values for all solvents are relatively close, with the gaseous phase having the highest value at 2.34 and chloroform having the lowest value at 1.37.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Code availability

Gaussian 09 W and Gauss view 5.1 are used for simulation, and origin software is used to draw the plots.

References

  1. Anna Venus S, Anbarasu S, Devarajan PA (2015) Growth and characterization studies of a new NLO single crystal potassium l-asparaginate. Optik 126:4561–4565. https://doi.org/10.1016/j.ijleo.2015.08.068

    Article  ADS  CAS  Google Scholar 

  2. Zhou W, Wu J, Liu W, Guo S-P (2023) Ag-based chalcogenides and derivatives as promising infrared nonlinear optical materials. Coord Chem Rev 477:214950. https://doi.org/10.1016/j.ccr.2022.214950

    Article  CAS  Google Scholar 

  3. Dubey RP, Patel UH, Patel BD (2018) Study on molecular structure, spectral investigations, NBO, NLO, Hirshfeld surface analysis and Homo-Lumo energy of silver complex of 4-amino-N-(2,6-dimethoxypyrimidin-4-yl)benzenesulfonamide. Inorganic and Nano-Metal Chemistry 48:110–119. https://doi.org/10.1080/24701556.2017.1357635

    Article  CAS  Google Scholar 

  4. Jia L, Wu J, Zhang Y et al (2023) Third-order optical nonlinearities of 2D materials at telecommunications wavelengths. Micromachines 14:307. https://doi.org/10.3390/mi14020307

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gounden D, Nombona N, Van Zyl WE (2020) Recent advances in phthalocyanines for chemical sensor, non-linear optics (NLO) and energy storage applications. Coord Chem Rev 420:213359

    Article  CAS  Google Scholar 

  6. Chong SP, Lai T, Zhou Y, Tang S (2013) Tri-modal microscopy with multiphoton and optical coherence microscopy/tomography for multi-scale and multi-contrast imaging. Biomed Opt Express, BOE 4:1584–1594. https://doi.org/10.1364/BOE.4.001584

    Article  PubMed  Google Scholar 

  7. Lian C, Vagionas C, Alexoudi T et al (2022) Photonic (computational) memories: tunable nanophotonics for data storage and computing. Nanophotonics 11:3823–3854. https://doi.org/10.1515/nanoph-2022-0089

    Article  CAS  Google Scholar 

  8. El-Shishtawy RM, Borbone F, Al-Amshany ZM et al (2013) Thiazole azo dyes with lateral donor branch: synthesis, structure and second order NLO properties. Dyes Pigm 96:45–51

    Article  CAS  Google Scholar 

  9. Van Erps J, Luan F, Pelusi MD et al (2010) High-resolution optical sampling of 640-Gb/s data using four-wave mixing in dispersion-engineered highly nonlinear As $ \_2 $ S $ \_3 $ planar waveguides. J Lightwave Technol 28:209–215

    Article  ADS  Google Scholar 

  10. Zou G, Ok KM (2020) Novel ultraviolet (UV) nonlinear optical (NLO) materials discovered by chemical substitution-oriented design. Chem Sci 11:5404–5409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hassan AU, Sumrra SH, Zubair M et al (2023) Correlating the charge density and structural fabrication of new organic dyes to create visible light harvesting materials with tunable NLO refining: insights from DFT. Chem Pap 77:6183–6202. https://doi.org/10.1007/s11696-023-02931-z

    Article  CAS  Google Scholar 

  12. Manzoni V, Gester R, da Cunha AR et al (2021) Solvent effects on Stokes shifts, and NLO response of thieno[3,4-b]pyrazine: a comprehensive QM/MM investigation. J Mol Liq 335:115996. https://doi.org/10.1016/j.molliq.2021.115996

    Article  CAS  Google Scholar 

  13. Raiol A, Pinheiro M, Belo E et al (2021) Experimental and theoretical spectroscopic characterization, NLO response, and reactivity of the pharmacological agent spilanthol and analogues. J Mol Struct 1227:129423. https://doi.org/10.1016/j.molstruc.2020.129423

    Article  CAS  Google Scholar 

  14. Kosar N, Mahmood T (2023) Outstanding NLO response of K3O@thia[n]circulenes; a DFT and molecular dynamics perspective. Phys Scr 98:105249. https://doi.org/10.1088/1402-4896/acf893

    Article  ADS  Google Scholar 

  15. Hassan AU, Sumrra SH, Mohyuddin A, Imran M (2024) Long range push-pull based NIR switching and photovoltaic optimization as energetic offset novel study design of novel quinazoline anchoring dyes. Mater Sci Eng, B 299:117050. https://doi.org/10.1016/j.mseb.2023.117050

    Article  CAS  Google Scholar 

  16. Durand RJ, Achelle S, Gauthier S et al (2018) Incorporation of a ferrocene unit in the $π$-conjugated structure of donor-linker-acceptor (D-$π$-A) chromophores for nonlinear optics (NLO). Dyes Pigm 155:68–74

    Article  CAS  Google Scholar 

  17. Sun G, Wang Z, Hu Y et al (2022) Anthryl-cinnamonitrile-based supramolecular artificial light-harvesting systems with high efficiency fabricated in aqueous solution. Dyes Pigm 197:109913

    Article  CAS  Google Scholar 

  18. Luo X-M, Chen L, Dong Y-Y et al (2018) Three new high-nuclear transition-metal-substituted heteropolytungstates: syntheses, crystal structures, magnetic studies and NLO properties. Dalton Trans 47:9504–9511

    Article  CAS  PubMed  Google Scholar 

  19. Kumari N, Roy P, Roy S et al (2022) Investigating the role of the reduced solubility of the pirfenidone–fumaric acid cocrystal in sustaining the release rate from its tablet dosage form by conducting comparative bioavailability study in healthy human volunteers. Mol Pharmaceutics 19:1557–1572. https://doi.org/10.1021/acs.molpharmaceut.2c00052

    Article  CAS  Google Scholar 

  20. Kongasseri A, Naz S, Garain S et al (2023) Revisiting organic charge-transfer cocrystals for wide-range tunable, ambient phosphorescence. Chemical Science 14:. https://doi.org/10.1039/D3SC04001A

  21. Sun J, Sun Y, Yan C et al (2018) Remarkable nonlinear optical response of pyrazine-fused trichalcogenasumanenes and their application for optical power limiting. J Mater Chem C 6:13114–13119. https://doi.org/10.1039/C8TC04778B

    Article  CAS  Google Scholar 

  22. Ye J-T, Qiu Y (2021) The inspiration and challenge for through-space charge transfer architecture: from thermally activated delayed fluorescence to nonlinear optical properties. Physical Chemistry Chemical Physics 23:. https://doi.org/10.1039/D1CP02565A

  23. Ye J-T, Chen X-Y, Qiu Y (2022) First hyperpolarizabilities of intramolecular charge-transfer architectures based on acenaphthene derivatives in gas, solution, and solid states. The journal of physical chemistry A 126:. https://doi.org/10.1021/acs.jpca.2c04380

  24. Shi J, Feng S, He P et al (2023) Nonlinear optical properties from engineered 2D materials. Molecules 28:6737. https://doi.org/10.3390/molecules28186737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He J, Guan Y, Trinquet V et al (2023) MgSiP 2: an infrared nonlinear optical crystal with a large non-resonant phase-matchable second harmonic coefficient and high laser damage threshold. Advanced Optical Materials. https://doi.org/10.1002/adom.202301060

    Article  Google Scholar 

  26. Hou N, Fang X-H, Liu T-T (2023) Structural, electronic, and nonlinear optical properties of small silver clusters doped graphyne and pyrazine-modified graphyne: a computational and comparative study. Int J Quantum Chem 123:e27048. https://doi.org/10.1002/qua.27048

    Article  CAS  Google Scholar 

  27. Teesetsopon P, Treewut P, Sripetch S et al (2023) Effect of pyrazine in PEDOT:PSS thin films: structural, optical, optoelectrical, and electrical analysis. Opt Mater 136:113465. https://doi.org/10.1016/j.optmat.2023.113465

    Article  CAS  Google Scholar 

  28. Afolabi SO, Semire B, Idowu MA (2021) Electronic and optical properties’ tuning of phenoxazine-based D-A2-π-A1 organic dyes for dye-sensitized solar cells. DFT/TDDFT investigations Heliyon 7:e06827. https://doi.org/10.1016/j.heliyon.2021.e06827

    Article  CAS  PubMed  Google Scholar 

  29. Laurent AD, Jacquemin D (2013) TD-DFT benchmarks: a review. Int J Quantum Chem 113:2019–2039. https://doi.org/10.1002/qua.24438

    Article  CAS  Google Scholar 

  30. Almogati RN, Aziz SG, Hilal R (2017) Effect of substitution on the optoelectronic properties of dyes for DSSC. A DFT approach. Journal of Theoretical and Computational Chemistry 16:1750018. https://doi.org/10.1142/S0219633617500183

  31. Hussain R, Imran M, Mehboob MY et al (2020) Exploration of adsorption behavior, electronic nature and NLO response of hydrogen adsorbed Alkali metals (Li, Na and K) encapsulated Al12N12 nanocages. J Theor Comput Chem 19:2050031. https://doi.org/10.1142/S0219633620500315

    Article  CAS  Google Scholar 

  32. Azaid A, Abram T, Rchid K et al (2022) Organic chromophores from D-π-A to D-A’-π-A: influence of the auxiliary acceptor on energy levels, molecular absorption, and nonlinear optical response. Letters in Applied NanoBioScience 12:137. https://doi.org/10.33263/LIANBS124.137

  33. Terry RJ, Vinton D, McMillen CD et al (2022) Hydrothermal single crystal growth and structural investigation of the stuffed tridymite family as NLO materials. J Alloy Compd 909:164634. https://doi.org/10.1016/j.jallcom.2022.164634

    Article  CAS  Google Scholar 

  34. Kumar R, Vijayan N, Gupta N et al (2023) Growth, structural and optical analysis of sodium sulphamate single crystal for NLO applications. J Nonlinear Optic Phys Mat 2350072. https://doi.org/10.1142/S0218863523500728

  35. Lalitha P, Arumugam S, Sinthiya A et al (2023) Oxalic acid incorporated acetamide single crystal growth dynamics, characterization, NLO and antimicrobial activities via shock wave treatment. Results in Chemistry 5:100790. https://doi.org/10.1016/j.rechem.2023.100790

    Article  CAS  Google Scholar 

  36. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  ADS  CAS  Google Scholar 

  37. Grimme S, Hansen A, Brandenburg JG, Bannwarth C (2016) Dispersion-corrected mean-field electronic structure methods. Chem Rev 116:5105–5154. https://doi.org/10.1021/acs.chemrev.5b00533

    Article  CAS  PubMed  Google Scholar 

  38. Barnham KWJ, Braun B, Nelson J et al (1991) Short-circuit current and energy efficiency enhancement in a low-dimensional structure photovoltaic device. Appl Phys Lett 59:135–137. https://doi.org/10.1063/1.105553

    Article  ADS  Google Scholar 

  39. Jacob JM, Ravva MK (2022) Theoretical insights into molecular design of hot-exciton based thermally activated delayed fluorescence molecules. Materials Advances 3:4954–4963. https://doi.org/10.1039/D2MA00039C

    Article  CAS  Google Scholar 

  40. Steinmann SN, Mo Y, Corminboeuf C (2011) How do electron localization functions describe π-electron delocalization? Phys Chem Chem Phys 13:20584–20592. https://doi.org/10.1039/C1CP21055F

    Article  CAS  PubMed  Google Scholar 

  41. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  42. Frisch JM, Trucks WG, Schlegel BH et al (2013) Gaussian 09, Revision D. 01, Gauss. Inc, Wallingford CT

  43. Luo J, Xue ZQ, Liu WM et al (2006) Koopmans’ theorem for large molecular systems within density functional theory. J Phys Chem A 110:12005–12009

    Article  CAS  PubMed  Google Scholar 

  44. Hassan AU, Sumrra SH, Zafar MN et al (2022) New organosulfur metallic compounds as potent drugs: synthesis, molecular modeling, spectral, antimicrobial, drug likeness and DFT analysis. Mol Diversity 26:51–72. https://doi.org/10.1007/s11030-020-10157-4

    Article  CAS  Google Scholar 

  45. Parr RG, Szentpály LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  46. Üstün E, Düşünceli SD, Özdemir I (2019) Theoretical analysis of frontier orbitals, electronic transitions, and global reactivity descriptors of M (CO) 4 L 2 type metal carbonyl complexes: a DFT/TDDFT study. Struct Chem 30:769–775

    Article  Google Scholar 

  47. Hassan AU, Sumrra SH (2024) Structure-based screening of sp2 hybridized small donor bridges as donor: acceptor switches for optical and photovoltaic applications: DFT way. J Mol Model 30:36. https://doi.org/10.1007/s00894-024-05836-0

    Article  CAS  PubMed  Google Scholar 

  48. Hassan AU, Sumrra SH, Zafar W et al (2022) Enriching the compositional tailoring of NLO responsive dyes with diversity oriented electron acceptors as visible light harvesters: a DFT/TD-DFT approach. Molecular Physics e2148585. https://doi.org/10.1080/00268976.2022.2148585

  49. Hassan AU, Sumrra SH, Mustafa G et al (2022) Efficient and tunable enhancement of NLO performance for indaceno-based donor moiety in A-π-D-π-D-π-A type first DSSC design by end-capped acceptors. J Mol Model 29:4. https://doi.org/10.1007/s00894-022-05402-6

    Article  CAS  PubMed  Google Scholar 

  50. Zhang T, Wei X-H, Zuo Y, Ma T-Y (2021) Switchable NLO response induced by rotation of the fulvalene diruthenium-linked polyoxometalate derivatives. J Mol Struct 1230:129659. https://doi.org/10.1016/j.molstruc.2020.129659

    Article  CAS  Google Scholar 

  51. Mahmood A, Abdullah MI, Khan SU-D (2015) Enhancement of nonlinear optical (NLO) properties of indigo through modification of auxiliary donor, donor and acceptor. Spectrochim Acta Part A Mol Biomol Spectrosc 139:425–430. https://doi.org/10.1016/j.saa.2014.12.038

    Article  ADS  CAS  Google Scholar 

  52. Glendening ED, Landis CR, Weinhold F (2012) Natural bond orbital methods. Wiley Interdisciplinary Reviews: Computational Molecular Science 2:1–42. https://doi.org/10.1002/wcms.51

    Article  CAS  Google Scholar 

  53. Ahmad N, Kausar A, Muhammad B (2016) An investigation on 4-aminobenzoic acid modified polyvinyl chloride/graphene oxide and PVC/graphene oxide based nanocomposite membranes. J Plast Film Sheeting 32:419–448. https://doi.org/10.1177/8756087915616434

    Article  CAS  Google Scholar 

  54. Mahmood A, Khan SU-D, Rana UA et al (2015) Effect of thiophene rings on UV/visible spectra and non-linear optical (NLO) properties of triphenylamine based dyes: a quantum chemical perspective. J Phys Org Chem 28:418–422. https://doi.org/10.1002/poc.3427

    Article  CAS  Google Scholar 

  55. Mahmood A, Wang J-L (2021) Machine learning for high performance organic solar cells: current scenario and future prospects. Energy Environ Sci 14:90–105. https://doi.org/10.1039/D0EE02838J

    Article  CAS  Google Scholar 

  56. Bine FK, Nkungli NK, Numbonui TS, Numbonui Ghogomu J (2018) Structural properties and reactive site selectivity of some transition metal complexes of 2, 2′(1E, 1′ E)-(ethane-1, 2-diylbis (azan-1-yl-1-ylidene)) bis (phenylmethan-1-yl-1-ylidene) dibenzoic acid: DFT, conceptual DFT, QTAIM, and MEP studies. Bioinorganic chemistry and applications 2018:

  57. Tsirelson VG, Stash A (2002) Analyzing experimental electron density with the localized-orbital locator. Acta Cryst B 58:780–785. https://doi.org/10.1107/S0108768102012338

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Researchers Supporting Project number (RSP2024R29), King Saud University, Riyadh, Saudi Arabia.

Funding

No funds or grants are received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [S.H. Sumrra]; Methodology: [A.U. Hassan]; Formal analysis and investigation: [S.H. Sumrra]; Writing-original draft preparation: [A. Mohyuddin]; Writing-review and editing: [S. M. Alshehri]; Resources: [S.H. Sumrra].

Corresponding authors

Correspondence to Abrar U. Hassan or Sajjad H. Sumrra.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

This article does not contain any studies with human participants or animals, clinical trial registration, or plant reproducibility performed by any author.

Consent for publication

All authors have approved the paper and agree with its publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 408 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A.U., Sumrra, S.H., Mohyuddin, A. et al. Solvent-assisted investigation of NLO responses of 3,5-dihydroxybenzoic acid and pyrazine-2-carboxamide cocrystal. Struct Chem (2024). https://doi.org/10.1007/s11224-024-02297-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11224-024-02297-2

Keywords

Navigation