Skip to main content
Log in

The Influence of Structural Arrangement of Inclusions on Dual Composite Strength

  • Published:
Russian Physics Journal Aims and scope

The paper deals with ceramic composites based on the ZrB2 matrix with SiC and MoSi2 particle inclusions. The volume fraction, size, and distribution of both inclusions are varied. The influence of the composite structure on their compressive strength is studied on the proposed computer models of a unit cell using the movable cellular automaton method. As a result, the mechanical behavior of ZrB2–X(SiC)–Y(MoSi2) composites with the different structural arrangements and phase compositions is studied. It is shown that the structure of dual ceramic composites with MoSi2 inclusions, which form mesoscopic granules, demonstrates the highest mechanical properties due to the microcrack retardation as compared to the materials with the uniform arrangement of these inclusions in the composite bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Evans, C. San Marchi, and A. Mortensen, Metal Matrix Composites in Industry. Springer, Boston (2003). DOI: https://doi.org/10.1007/978-1-4615-0405-4.

    Book  Google Scholar 

  2. F. Monteverde, C. Melandri, S. Failla, et al., J. Eur. Ceram. Soc., 38, 2961–2970 (2018). DOI: https://doi.org/10.1016/j.jeurceramsoc.2018.02.003.

    Article  Google Scholar 

  3. P. Sengupta, S. S. Sahoo, A. Bhattacharjee, et al., J. Alloys Compd., 850, 156668 (2021). DOI: https://doi.org/10.1016/j.jallcom.2020.156668.

    Article  Google Scholar 

  4. A. I. Dmitriev, A. Yu. Nikonov, A. R. Shugurov, and A. V. Panin, Phys. Mesomech., 22, 365–374 (2019).

    Article  Google Scholar 

  5. R. R. Balokhonov, E. P. Evtushenko, V. A. Romanova, et al., Phys. Mesomech., 23, 135–146 (2020). DOI: https://doi.org/10.1134/S1029959920020058.

    Article  Google Scholar 

  6. S. G. Psakhie, S. Zavshek, J. Jezershek, et al., Comput. Mater. Sci., 19, 69–76 (2000).

    Article  Google Scholar 

  7. A. I. Dmitriev, A. Yu. Smolin, S. G. Psakhie, et al., Phys. Mesomech., 11, 73–84 (2008).

    Article  Google Scholar 

  8. E. V. Shilko, S. G. Psakhie, S. Schmauder, et al., Comput. Mater. Sci., 102, 267–285 (2015). DOI: https://doi.org/10.1016/j.commatsci.2015.02.026.

    Article  Google Scholar 

  9. A. Yu. Smolin, E. V. Shilko, S. V. Astafurov, et al., Def. Technol., 14, 643–656 (2018). DOI: https://doi.org/10.1016/j.dt.2018.09.003.

    Article  Google Scholar 

  10. G. M. Eremina and A. Yu. Smolin, FU Mech. Eng., 17, No. 1, 29–38 (2019). DOI: 10.22190/FUME190122014E.

  11. A. Yu. Smolin, G. M. Eremina, A. V. Dimaki, and E. V. Shilko, J. Phys.: Conf. Ser., 1391, 012005 (2019). DOI: https://doi.org/10.1088/1742-6596/1391/1/012005.

    Article  Google Scholar 

  12. B. R. Golla, A. Mukhopadhyay, B. Basu, and S. K. Thimmappa, Progr. Mater. Sci., 111, 100651 (2020). DOI: https://doi.org/10.1016/j.pmatsci.2020.100651.

    Article  Google Scholar 

  13. S. Zhu, W. G. Fahrenholtz, and G. E. Hilmas, J. Eur. Ceram. Soc., 2077–2083, 2077–2083 (2007). DOI: https://doi.org/10.1016/j.jeurceramsoc.2006.07.003.

    Article  Google Scholar 

  14. K. S. S. Aradhya and M. R. Doddamani, Am. J. Mater. Sci., 5, 7–11 (2015). DOI: https://doi.org/10.5923/c.materials.201502.02.

    Article  Google Scholar 

  15. A. Mohamad, Y. Ohishi, H. Muta, et al., Phys. Status Solidi B, 255, No. 4, 1700448 (2018). DOI: https://doi.org/10.1002/pssb.201700448.

    Article  ADS  Google Scholar 

  16. S. Vorotilo, A. Yu. Potanin, Yu. S. Pogozhev, et al., Ceram. Int., 45, 96–107 (2019). DOI: https://doi.org/10.1016/j.ceramint.2018.09.138.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Eremina.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 118–124, June, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremina, G.M., Smolin, A.Y. & Martyshina, I.P. The Influence of Structural Arrangement of Inclusions on Dual Composite Strength. Russ Phys J 64, 1093–1099 (2021). https://doi.org/10.1007/s11182-021-02429-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02429-9

Keywords

Navigation