Skip to main content
Log in

Effect of MoSi2 distribution on room and high temperature mechanical properties of aluminum matrix nanocomposites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocomposites of 2024 aluminum–MoSi2 were prepared using mechanical alloying method followed by cold and hot pressing. Influences of volume fraction and distribution of nanosized MoSi2 reinforcement on mechanical properties of the composites were investigated. Microstructural characterization was carried out by scanning electron microscopy and energy dispersive spectroscopy. Mechanical properties of the nanocomposites were evaluated via hardness, wear, and also room and high temperature compression tests. The results showed that although the distribution of low content of MoSi2 nanoparticles in the matrix is homogeneous, with increasing the reinforcement fraction, the tendency of agglomeration is gradually intensified. The addition of reinforcing particles continuously brings a considerable enhancement in the mechanical properties of the matrix alloy but by exceeding a certain amount of the reinforcement fraction, this improvement reduces mainly because of the microstructure inhomogeneity. In addition, the nanocomposite with 3 vol% MoSi2 exhibits the optimum mechanical properties at ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. D.S. Han, H. Jones, and H.V. Atkinson: The wettability of silicon carbide by liquid aluminum. J. Mater. Sci. 28, 2654 (1993).

    Article  CAS  Google Scholar 

  2. S.M. Zebarjad and S.A. Sajjadi: Dependency of physical and mechanical properties of mechanical alloyed Al–Al2O3 composite on milling time. Mater. Des. 28, 2113 (2007).

    Article  CAS  Google Scholar 

  3. H. Abdoli, E. Salahi, H. Farnoush, and K. Pourazrang: Evolutions during synthesis of Al–AlN nanostructured composite powder by mechanical alloying. J. Alloys Compd. 461, 166 (2008).

    Article  CAS  Google Scholar 

  4. M. Sameezadeh, M. Emamy, and H. Farhangi: Effects of particulate reinforcement and heat treatment on the hardness and wear properties of AA 2024–MoSi2 nanocomposites. Mater. Des. 32, 2157 (2011).

    Article  CAS  Google Scholar 

  5. G. Zhang, L. Bingchao, J. Zhang, and W. Cai: The strain amplitude-controlled cyclic fatigue behavior of Al2O3 fiber reinforced Al–Si alloy composite at elevated temperatures. Prog. Nat. Sci. 22, 153 (2012).

    Article  Google Scholar 

  6. X.H. Qu, L. Zhang, M. Wu, and S.B. Ren: Review of metal matrix composites with high thermal conductivity for thermal management applications. Prog. Nat. Sci. 21, 189 (2011).

    Article  Google Scholar 

  7. C. Diaz, J.L. Gonzalez-Carrasco, G. Caruana, and M. Lieblich: Ni3Al intermetallic particles as wear-resistant reinforcement for Al-base composites processed by powder metallurgy. Metall. Mater. Trans. A 27, 3259 (1996).

    Article  Google Scholar 

  8. M. Alizadeh, M. Alizadeh, and R. Amini: Structural and mechanical properties of Al/B4C composites fabricated by wet attrition milling and hot extrusion. J. Mater. Sci. Technol. 29, 725 (2013).

    Article  CAS  Google Scholar 

  9. J. Corrochano, M. Lieblich, and J. Ibanez: On the role of matrix grain size and particulate reinforcement on the hardness of powder metallurgy Al–Mg–Si/MoSi2 composites. Compos. Sci. Technol. 69, 1818 (2009).

    Article  CAS  Google Scholar 

  10. B. Torres, M. Lieblich, J. Ibanez, and A. Garcia-Escorial: Mechanical properties of some PM aluminide and silicide reinforced 2124 aluminium matrix composites. Scr. Mater. 47, 45 (2002).

    Article  CAS  Google Scholar 

  11. J.C. Walker, I.M. Ross, W.M. Rainforth, and M. Lieblich: TEM characterisation of near surface deformation resulting from lubricated sliding wear of aluminium alloy and composites. Wear 263, 707 (2007).

    Article  CAS  Google Scholar 

  12. J. Corrochano, J.C. Walker, M. Lieblich, J. Ibanez, and W.M. Rainforth: Dry sliding wear behaviour of powder metallurgy Al-Mg-Si alloy–MoSi2 composites and the relationship with the microstructure. Wear 270, 658 (2011).

    Article  CAS  Google Scholar 

  13. C. Suryanarayana: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001).

    Article  CAS  Google Scholar 

  14. H. Arik: Production and characterization of in situ Al4C3 reinforced aluminum-based composite produced by mechanical alloying technique. Mater. Des. 25, 31 (2004).

    Article  CAS  Google Scholar 

  15. C. Suryanarayana: Synthesis of nanocomposites by mechanical alloying. J. Alloy Compd. 509, S229 (2011).

    Article  CAS  Google Scholar 

  16. D. Jeyasimman, S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and R.S. Kambali: An investigation of the synthesis, consolidation and mechanical behaviour of Al 6061 nanocomposites reinforced by TiC via mechanical alloying. Mater. Des. 54, 394 (2014).

    Article  Google Scholar 

  17. M. Sameezadeh, H. Farhangi, and M. Emamy: Structural characterization of AA 2024–MoSi2 nanocomposite powders produced by mechanical milling. Int. J. Miner., Metall. Mater. 20, 298 (2013).

    Article  CAS  Google Scholar 

  18. C.J. Rocha, R.M. Leal Neto, V.S. Gonçalves, L.L. Carvalho, and F.A. Filho: An Investigation of the use of stearic acid as a process control agent in high energy ball milling of Nb–Al and Ni–Al powder mixtures. Mater. Sci. Forum 416–418, 144 (2003).

    Article  Google Scholar 

  19. ASTM: Standard test method for wear testing with a pin-on-disc apparatus, ASTM G99-95. (ASTM, Philadelphia: PA, 1995).

    Google Scholar 

  20. J.B. Fogagnolo, M.H. Robert, and J.M. Torralba: Mechanically alloyed AlN particle-reinforced Al-6061 matrix composites: Powder processing, consolidation and mechanical strength and hardness of the as-extruded materials. Mater. Sci. Eng., A 426, 85 (2006).

    Article  Google Scholar 

  21. D. Bozic, B. Dimcic, O. Dimcic, J. Stasic, and V. Rajkovic: Influence of SiC particles distribution on mechanical properties and fracture of DRA alloys. Mater. Des. 31, 134 (2010).

    Article  CAS  Google Scholar 

  22. S.C. Sharma and A. Ramesh: Effect of heat treatment on mechanical properties of particulate reinforced Al6061 composites. J. Mater. Eng. Perform. 9, 557 (2000).

    Article  CAS  Google Scholar 

  23. H.R. Lashgari, A.R. Sufizadeh, and M. Emamy: The effect of strontium on the microstructure and wear properties of A356–10%B4C cast composites. Mater. Des. 31, 2187 (2010).

    Article  CAS  Google Scholar 

  24. C.Y.H. Lim, D.K. Leo, J.J.S. Ang, and M. Gupta: Wear of magnesium composites reinforced with nano-sized alumina particulates. Wear 259, 620 (2005).

    Article  CAS  Google Scholar 

  25. D. Poirier, R.A.L. Drew, M.L. Trudeau, and R. Gauvin: Fabrication and properties of mechanically milled alumina/aluminum nanocomposites. Mater. Sci. Eng., A 527, 7605 (2010).

    Article  Google Scholar 

  26. L. Li, M.O. Lai, M. Gupta, B.W. Chua, and A. Osman: Improvement of microstructure and mechanical properties of AZ91/SiC composite by mechanical alloying. J. Mater. Sci. 35, 5553 (2000).

    Article  CAS  Google Scholar 

  27. Z. Razavi Hesabi, A. Simchi, and A.M. Seyed Reihani: Structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced Al matrix composites. Mater. Sci. Eng., A 428, 159 (2006).

    Article  Google Scholar 

  28. H. Ahamed and V. Senthilkumar: Role of nano-size reinforcement and milling on the synthesis of nano-crystalline aluminium alloy composites by mechanical alloying. J. Alloys Compd. 505, 772 (2010).

    Article  CAS  Google Scholar 

  29. M. Sameezadeh, H. Farhangi, and M. Emamy: Nanocomposites of aluminum alloy-MoSi2: Synthesis and characterization. J. Compos. Mater. 49, 3145 (2015).

    Article  CAS  Google Scholar 

  30. Y.C. Kang and S.L.I. Chan: Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater. Chem. Phys. 85, 438 (2004).

    Article  CAS  Google Scholar 

  31. M. Rahimian, N. Ehsani, N. Parvin, and H.R. Baharvandi: The effect of sintering temperature and the amount of reinforcement on the properties of Al–Al2O3 composite. Mater. Des. 30, 3333 (2009).

    Article  CAS  Google Scholar 

  32. S.H. Avner: Introduction to Physical Metallurgy, 2nd ed. (McGraw-Hill Book Co., Tokyo, 1983); p. 140.

    Google Scholar 

  33. R.E. Reed-hill and R. Abbaschian: Physical Metallurgy Principles, 3rd ed. (PWS Publishing Co., Boston, 1994), p. 183.

    Google Scholar 

  34. L. Blaz, J. Kaneko, M. Sugamata, Z. Sierpinski, and M. Tumidajewicz: Structural aspects of annealing and hot deformation of Al-Nb2O5 mechanically alloyed composite. Mater. Sci. Technol. 21, 715 (2005).

    Article  CAS  Google Scholar 

  35. D.J. Wulpi: Failure analysis and Prevention: Failures of shafts. In ASM Handbook, 10th ed., Vol. 11, K. Mills ed.; ASM International, Ohio, 1990; pp. 459, 482.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Sameezadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sameezadeh, M., Emamy, M. & Farhangi, H. Effect of MoSi2 distribution on room and high temperature mechanical properties of aluminum matrix nanocomposites. Journal of Materials Research 31, 1741–1747 (2016). https://doi.org/10.1557/jmr.2016.190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.190

Navigation