Skip to main content
Log in

The influence of medium polarity on the kinetics and mechanism of interaction of aliphatic nitroxides with hydroperoxyl radicals

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The mechanism of 1,2-substituted ethylene and 1,4-substituted butadiene oxidation with cyclic multiple chain termination by nitroxide radicals has been confirmed using a large set of nitroxides of piperidine, pyrroline, pyrrolidine and imidazoline series. This mechanism includes hydroperoxyl radicals as chain propagating agents and is realized both in non-polar and in polar media. The solvent effect on the rate constant of nitroxide and hydroperoxide radicals interaction is explained by the specific solvation of \({\text{HO}}_{{2}}^{{{ \bullet }}}\) radicals. An additional effect in high dielectric constant media can be provided by the nonspecific solvation of nitroxide radicals. In low polar solvents the reactivity of > NO is almost completely determined by > NO–H bond energy of hydroxylamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pliss E, Machtin V, Grobov A, Pliss R, Sirik A (2017) Int J Chem Kinet 49:173–181

    Article  CAS  Google Scholar 

  2. Pliss E, Machtin V, Pliss R, Sirik A (2018) Reac Kinet Mech Cat 123:559–571

    Article  CAS  Google Scholar 

  3. Pliss E, Machtin V, Soloviev M, Grobov A, Pliss R, Sirik A, Rusakov A (2018) Int J Chem Kinet 50:397–409

    Article  CAS  Google Scholar 

  4. Vardanyan R, Denisov E (1971) Russ Chem Bull 20:2818–2820

    Article  Google Scholar 

  5. Denisov E (1996) Russ Chem Rev 65:547–563

    Article  CAS  Google Scholar 

  6. Denisov E, Afanas’ev I (2005) Oxidation and antioxidantsin organic chemistry and biology. CRC Press, BocaRaton

    Book  Google Scholar 

  7. Pliss E, Tikhonov I, Rusakov A (2012). In: Kokorin AI (ed) Nitroxides—theory, experiment and applications. InTech, Rijeka, p 263

    Google Scholar 

  8. Griesser M, Shah R, Van Kessel A, Zilka O, Haidasz E, Pratt D (2018) J Am Chem Soc 140:3798–3808

    Article  CAS  Google Scholar 

  9. Baschieri A, Valgimigli L, Gabbanini S, DiLabio G, Romero-Montalvo E, Amorati R (2018) J Am Chem Soc 140:10354–10362

    Article  CAS  Google Scholar 

  10. Goldstein S, Samuni A (2007) J Phys Chem A 111:1066–1072

    Article  CAS  Google Scholar 

  11. Tikhonov I, Pliss E, Borodin L (2015) Sen’ V, Kuznetsova T. Russ Chem Bull 64:2438–2443

    Article  CAS  Google Scholar 

  12. Tikhonov I, Pliss E, Borodin L, Sen’ V, Kuznetsova T (2016) Russ Chem Bull 65:2985–2987

    Article  CAS  Google Scholar 

  13. Denisov E (2016) Kinet Catal 57:750–757

    Article  CAS  Google Scholar 

  14. Sen’ V, Golubev V, Kulyk I, Rozantsev E (1976) Russ Chem Bull 25:1647–1654

    Article  Google Scholar 

  15. Goldstein S, Merenyi G, Russo A, Samuni A (2003) J Am Chem Soc 125:789–795

    Article  CAS  Google Scholar 

  16. Moskalenko I, Tikhonov I, Pliss E, Fomich M, Shmanai V, Rusakov A (2018) Russ J Phys Chem B 12:987–991

    Article  CAS  Google Scholar 

  17. Sen’ V, Tikhonov I, Borodin L, Pliss E, Golubev V, Syroeshkin M, Rusakov A (2015) J Phys Org Chem 28:17–24

    Article  CAS  Google Scholar 

  18. Amorati R, Baschieri A, Valgimigli L (2017). J Chem Rev. https://doi.org/10.1155/2017/6369358

    Article  Google Scholar 

  19. Hohenberg P, Kohn W (1964) Phys Rev 136:864–871

    Article  Google Scholar 

  20. Kohn W, Sham L (1965) Phys Rev 140:1133–1138

    Article  Google Scholar 

  21. Becke A (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  22. Miehlich B, Savin H, Preuss H (1989) Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  23. Valiev M, Bylaska E, Govind N, Kowalski K, Straatsma TP, Van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) Comput Phys Commun 181:1477–1489

    Article  CAS  Google Scholar 

  24. Mueller M (2002) Fundamentals of quantum chemistry. Molecular spectroscopy and modern electronic structure computation. Kluwer, New York

    Google Scholar 

  25. York D, Karplus M (1999) J Phys Chem A 103:11060–11079

    Article  CAS  Google Scholar 

  26. Klamt A, Moya C, Palomar J (2015) J Chem Theory Comput 11:4220–4225

    Article  CAS  Google Scholar 

  27. Marenich A, Cramer C, Truhlar D (2009) Russ J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  28. Sokolov A, Popov S, Pliss E, Loshadkin D (2013) Computer program “kinetics of 2012”—to calculate the kinetic parameters of chemical and biochemical processes. Official Bulletin of the Federal Service for Intellectual Property. Computer Programs. Database. topographies of integrated circuits

  29. Howard J, Ingold K (1966) Can J Chem 45:785–792

    Article  Google Scholar 

  30. Foti M, Sortino S, Ingold K (2005) Chemistry–A Eur J 11:1942–1948

    Article  CAS  Google Scholar 

  31. Snelgrove D, Lusztyk J, Banks J, Mulder P, Ingold KU (2001) J Am Chem Soc 123:469–477

    Article  CAS  Google Scholar 

  32. Lednev S, Sirick A, Pliss E, Rusakov A, Shvyrkova N, Ivanov A (2015) Reac Kinet Mech Cat 116(1):43–50

    Article  CAS  Google Scholar 

  33. Sirick A, Lednev S, Moskalenko I, Machtin V, Pliss E (2016) Reac Kinet Mech Cat 117(2):405–415

    Article  CAS  Google Scholar 

  34. Abraham M, Berthelot M, Laurence C, Taylor P (1988) J Am Chem Soc 110:8534–8536

    Article  CAS  Google Scholar 

  35. Abraham M, Grellier P, Prior D, Morris J, Taylor P (1990) J Chem Soc Perkin Trans 2(4):521–529

    Article  Google Scholar 

  36. Sawyer D, McDowell M, Yamaguchi K (1988) Chem Res Toxicol 1(2):97–100

    Article  CAS  Google Scholar 

  37. Buchachenko A, Pliss E (2016) Russ Chem Rev 85:557–564

    Article  CAS  Google Scholar 

  38. Warren J, Tronic T, Mayer J (2010) Chem Rev 110:6961–7001

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (Grant Number 20-13-00148).

Author information

Authors and Affiliations

Authors

Contributions

Each author made an equal contribution to the work.

Corresponding author

Correspondence to Andrey Sirik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pliss, E., Soloviev, M., Sen’, V. et al. The influence of medium polarity on the kinetics and mechanism of interaction of aliphatic nitroxides with hydroperoxyl radicals. Reac Kinet Mech Cat 132, 617–635 (2021). https://doi.org/10.1007/s11144-021-01948-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-01948-3

Keywords

Navigation