Skip to main content

Advertisement

Log in

Effect of iron, zinc and manganese shortage-induced change on photosynthetic pigments, some osmoregulators and chlorophyll fluorescence parameters in lettuce

  • Original paper
  • Published:
Photosynthetica

Abstract

Although the beneficial role of Fe, Zn, and Mn on many physiological and biochemical processes is well established, effects of each of these elements on chlorophyll (Chl) a fluorescence and photosynthetic pigment contents is not well studied. The objective of this study was to evaluate effects of Fe, Zn, and Mn deficiency in two lettuce cultivars. The parameters investigated could serve also as physiological and biochemical markers in order to identify stress-tolerant cultivars. Our results indicated that microelement shortage significantly decreased contents of photosynthetic pigments in both lettuce cultivars. Chl a fluorescence parameters including maximal quantum yield of PSII photochemistry and performance index decreased under micronutrient deficiency, while relative variable fluorescence at J-step and minimal fluorescence yield of the dark-adapted state increased under such conditions in both cultivars. Micronutrient deficiency also reduced all parameters of quantum yield and specific energy fluxes excluding quantum yield of energy dissipation, quantum yield of reduction of end electron acceptors at the PSI, and total performance index for the photochemical activity. Osmoregulators, such as proline, soluble sugar, and total phenols were enhanced in plants grown under micronutrient deficiency. Fe, Zn, and Mn deficiency led to a lesser production of dry mass. The Fe deficiency was more destructive than that of Zn and Mn on the efficiency of PSII in both lettuce cultivars. Our results suggest that the leaf lettuce, which showed a higher efficiency of PSII, electron transport, quantum yield, specific energy fluxes, and osmoregulators under micronutrient deficiency, was more tolerant to stress conditions than crisphead lettuce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Area:

area above the OJIP curve, it expresses the size of the reduced PQ pool

Chl:

chlorophyll

DM:

dry mass

ET0/RC:

electron transport flux per RC

FeD:

iron deficiency

FM:

fresh mass

Fm :

maximal fluorescence of the dark-adapted state

Fo :

minimal fluorescence yield of the dark-adapted state

Fv :

maximal variable fluorescence

Fv/Fm :

maximal quantum yield of PSII photochemistry

MnD:

manganese deficiency

PI:

performance index

PIabs :

performance index for the photochemical activity

PItot :

total performance index for the photochemical activity

RC:

reaction center

SM:

normalized area related to the number of electron carriers per electron transport chain

TChl:

total chlorophyll

TR0/RC:

trapped energy flux per RC

Vi :

relative variable fluorescence at time 30 ms I-step after start of actinic light pulse

Vj :

relative variable fluorescence at J-step

ZIP:

zinc transporters proteins

Φdo :

quantum yield of energy dissipation

φET20 :

quantum yield of electron transport from QA to QB in PSII

Φpo :

maximum quantum yield of primary PSII photochemistry

Φre10 :

quantum yield of reduction of end electron acceptors at the PSI

Ψo :

trapped exiton moves an electron in to the electron transport chain beyond QA

ZnD:

zinc deficiency.

References

  • Aravind P., Prasad M.N.V.: Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Ceratophyllum demersum L., a freshwater macrophyte. — Plant Sci. 166: 1321–1327, 2004.

    Article  CAS  Google Scholar 

  • Arias-Baldrich C., Bosch N., Begines D. et al.: Proline synthesis in barley under iron deficiency and salinity. — J. Plant Physiol. 183: 121–129, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Barker A.V., Pilbeam D.J.: Handbook of Plant Nutrition. Pp. 392–457. CRC Press, New York 2015.

    Google Scholar 

  • Beauchemin R., Gauthier A., Harnois J. et al.: Spermine and spermidine inhibition of photosystem II: disassembly of the oxygen evolving complex and consequent perturbation in electron donation from Tyr Z to P680+ and the quinone acceptors QA to QB. — BBA-Bioenergetics 1767: 905–912, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Bertamini M., Nedunchezhian N., Borghi B.: Effect of iron deficiency induced changes on photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase, and photosystem activities in field grown grapevine (Vitis vinifera L. cv. Pinot noir) leaves. — Photosynthetica 39: 59–65, 2001.

    Article  CAS  Google Scholar 

  • Bityutskii N., Pavlovic J., Yakkonen K. et al.: Contrasting effect of silicon on iron, zinc and manganese status and accumulation of metal-mobilizing compounds in micronutrient-deficient cucumber. — Plant Physiol. Bioch. 74: 205–211, 2014.

    Article  CAS  Google Scholar 

  • Breštič M., Živčák M., Kunderlíková K. et al.: Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. — Photosynth. Res. 125: 151–166, 2015.

    Article  PubMed  Google Scholar 

  • Cesco S., Neumann G., Tomasi N. et al.: Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. — Plant Soil 329: 1–25, 2010.

    Article  CAS  Google Scholar 

  • Chaves M.M., Maroco J.P., Pereira J.S.: Understanding plant responses to drought. — from genes to the whole plant. — Funct. Plant Biol. 30: 239–264, 2003.

    Article  CAS  Google Scholar 

  • Ciompi S., Gentili E., Guidi L. et al.: The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower. — Plant Sci. 118: 177–184, 1996.

    Article  CAS  Google Scholar 

  • Donnini S., Guidi L., Degl'Innocenti E. et al.: Image changes in chlorophyll fluorescence of cucumber leaves in response to iron deficiency and resupply. — J. Plant Nutr. Soil Sci. 176: 734–742, 2013.

    CAS  Google Scholar 

  • Duysens L., Sweers H.: Mechanism of two photochemical reactions in algae as studied by means of fluorescence. — In: Japanese Society of Plant Physiologists (ed.): Studies on Microalgae and Photosynthetic Bacteria. Pp. 353–372. Univ. of Tokyo Press, Tokyo 1963.

    Google Scholar 

  • Evans J.R., Terashima I.: Effects of nitrogen nutrition on electron transport components and photosynthesis in spinach. — Funct. Plant Biol. 14: 59–68, 1987.

    CAS  Google Scholar 

  • Fu C., Li M., Zhang Y. et al.: Morphology, photosynthesis, and internal structure alterations in field apple leaves under hidden and acute zinc deficiency. — Sci. Hortic.-Amsterdam 193: 47–54, 2015.

    Article  CAS  Google Scholar 

  • Hajiboland R., Amirazad F.: Growth, photosynthesis and antioxidant defense system in Zn-deficient red cabbage plants. — Plant Soil Environ. 56: 209–217, 2010

    Article  CAS  Google Scholar 

  • Hayat S., Hayat Q., Alyemeni M.N. et al.: Role of proline under changing environments: a review. — Plant Signal. Behav. 7: 1456–1466, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidari M., Sarani S.: Growth, biochemical components and ion content of chamomile (Matricaria chamomilla L.) under salinity stress and iron deficiency. — J. Saudi Society Agri. Sci. 11: 37–42, 2012.

    CAS  Google Scholar 

  • Henriques F.S.: Loss of blade photosynthetic area and of chloroplasts photochemical capacity account for reduced CO2 assimilation rates in zinc-deficient sugar beet leaves. — J. Plant Physiol. 158: 915–919, 2001.

    Article  CAS  Google Scholar 

  • Isfendiyaroglu M., Ozeker E.: The relation between phenolic compound and seed dormancy in pistachios and almond. — Cahiers Opt. Mediterr. 56: 232–277, 2002

    Google Scholar 

  • Izaguirre-Mayoral M., Sinclair T.: Soybean genotypic difference in growth, nutrient accumulation and ultrastructure in response to manganese and iron supply in solution culture. — Ann. Bot.-London 96: 149–158, 2005.

    Article  CAS  Google Scholar 

  • Jamalomidi M., Esfahani M., Carapetian J.: Zinc and salinity interaction on agronomical traits, chlorophyll and proline content in lowland rice (Oryza sativa L.) genotypes. — Pak. J. Biol. Sci. 9: 1315–1319, 2006.

    Article  CAS  Google Scholar 

  • Kalaji H.M. Loboda T.: Photosystem II of barley seedlings under cadmium and lead stress. — Plant Soil Environ. 53: 511–516, 2007.

    Article  CAS  Google Scholar 

  • Kalaji H.M., Oukarroum A., Alexandrov V. et al.: Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. — Plant Physiol. Bioch. 81: 16–25, 2014.

    Article  CAS  Google Scholar 

  • Kautsky H., Hirsch A.: [New experiments on carbonic acid assimilation.]. — Naturwissenschaften 19: 964–964, 1931. [In German]

    Article  CAS  Google Scholar 

  • Khan M.I.R., Khan N.A.: Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PSII activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. — Protoplasma 251: 1007–1019, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler R.: Chlorophylls and carotenoids. — pigments of photosynthetic biomembranes. — Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Machold O., Stephan U.: The function of iron in porphyrin and chlorophyll biosynthesis. — Phytochemistry 8: 2189–2192, 1969.

    Article  CAS  Google Scholar 

  • Mahmoudi H., Ksouri R., Gharsalli M. et al.: Differences in responses to iron deficiency between two legumes: lentil (Lens culinaris) and chickpea (Cicer arietinum). — J. Plant Physiol. 162: 1237–1245, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Marschner H.: Marschner's Mineral Nutrition of Higher Plants. Pp. 191–243. Academic Press, London 2011.

    Google Scholar 

  • Milner M.J., Seamon J., Craft E. et al.: Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. — J. Exp. Bot. 64: 369–381, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales F., Abadía A., Abadía J.: Chlorophyll fluorescence and photon yield of oxygen evolution in iron-deficient sugar beet (Beta vulgaris L.) leaves. — Plant Physiol. 97: 886–893, 1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osório J., Osório M.L., Correia P.J. et al.: Chlorophyll fluorescence imaging as a tool to understand the impact of iron deficiency and resupply on photosynthetic performance of strawberry plants. — Sci. Hortic.-Amsterdam 165: 148–155, 2014.

    Article  Google Scholar 

  • Oukarroum A., Bussotti F., Goltsev V. et al.: Correlation between reactive oxygen species production and photochemistry of photosystems I and II in Lemna gibba L. plants under salt stress. — Environ. Exp. Bot. 109: 80–88, 2015

    Article  CAS  Google Scholar 

  • Pavlovic J., Samardzic J., Maksimović V. et al.: Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. — New Phytol. 198: 1096–1107, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Percival G., Henderson A.: An assessment of the freezing tolerance of urban trees using chlorophyll fluorescence. — J. Hortic. Sci. Biotech. 78: 254–260, 2003.

    Article  Google Scholar 

  • Pestana M., Correia P.J., Saavedra T. et al.: Development and recovery of iron deficiency by iron resupply to roots or leaves of strawberry plants. — Plant Physiol. Bioch. 53: 1–5, 2012.

    Article  CAS  Google Scholar 

  • Petrazzini L.L., Souza G.A., Rodas C.L. et al.: Nutritional deficiency in crisphead lettuce grown in hydroponics. — Hortic. Bras. 32: 310–313, 2014.

    Article  CAS  Google Scholar 

  • Qu C., Gong X., Liu C. et al.: Effects of manganese deficiency and added cerium on photochemical efficiency of maize chloroplasts. — Biol. Trace. Elem. Res. 146: 94–100, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Roháček K., Barták M.: Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications. — Photosynthetica 37: 339–363, 1999.

    Article  Google Scholar 

  • Roosta H.R., Schjoerring J.K.: Effects of ammonium toxicity on nitrogen metabolism and elemental profile of cucumber plants. — J. Plant Nutr. 30: 1933–1951, 2007.

    Article  CAS  Google Scholar 

  • Roosta H.R., Mohsenian Y.: Effects of foliar spray of different Fe sources on pepper (Capsicum annum L.) plants in aquaponic system. — Sci. Hortic.-Amsterdam 146: 182–191, 2012.

    Article  CAS  Google Scholar 

  • Saradhi P.P., Alia, Vani B.: Inhibition of mitochondrial electron transport is the prime cause behind proline accumulation during mineral deficiency in Oryza sativa. — Plant Soil 155: 465–468, 1993.

    Article  Google Scholar 

  • Shangguan Z., Shao M., Dyckmans J.: Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat. — J. Plant Physiol. 156: 46–51, 2000.

    Article  CAS  Google Scholar 

  • Sinclair S.A., Krämer U.: The zinc homeostasis network of land plants. — BBA-Mol. Cell. Biol. L. 1823: 1553–1567, 2012.

    CAS  Google Scholar 

  • Singh P., Misra A., Srivastava N.K.: Influence of Mn deficiency on growth, chlorophyll content, physiology, and essential monoterpene oil(s) in genotypes of spearmint (Mentha spicata L.). — Photosynthetica 39: 473–476, 2001.

    Article  CAS  Google Scholar 

  • Sperotto R.A., Ricachenevsky F.K., Fett, J.P.: Iron deficiency in rice shoots: identification of novel induced genes using RDA and possible relation to leaf senescence. — Plant Cell Rep. 26: 1399–1411, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. — In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp. 445–483, Taylor and Francis, London 2000.

    Google Scholar 

  • Strasser R.J., Tsimilli-Michael M., Qiang S. et al.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. — BBABioenergetics 1797: 1313–1326, 2010.

    Article  CAS  Google Scholar 

  • Suzuki M., Bashir K., Inoue H. et al.: Accumulation of starch in Zn-deficient rice. — Rice 5: 9, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Terry N., Abadía J.: Function of iron in chloroplasts. — J. Plant Nutr. 9: 609–646, 1986.

    Article  CAS  Google Scholar 

  • Timperio A.M., D'Amici G.M., Barta C. et al.: Proteomics, pigment composition, and organization of thylakoid membranes in iron-deficient spinach leaves. — J. Exp. Bot. 58: 3695–3710, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Tuba Z., Saxena D.K., Srivastava K. et al.: Chlorophyll a fluorescence measurements for validating the tolerant bryophytes for heavy metal (Pb) biomapping. — Curr. Sci. 98: 1505–1508, 2010.

    CAS  Google Scholar 

  • Valentinuzzi F., Pii Y., Vigani G. et al.: Phosphorus and iron deficiencies induce a metabolic reprogramming and affect the exudation traits of the woody plant Fragaria × ananassa. — J. Exp. Bot. 66: 6483–6495, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Weng J.K., Li X., Bonawitz N.D. et al.: Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. — Curr. Opin. Biotech. 19: 166–172, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Xue H., Aziz R.M., Sun N. et al.: Inhibition of cellular transformation by berry extracts. — Carcinogenesis 22: 351–356, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Zhao A.Q., Bao Q.L., Tian X.H. et al.: Combined effect of iron and zinc on micronutrient levels in wheat (Triticum aestivum L.). — J. Env. Biol. 32: 235–239, 2011.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Estaji.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roosta, H.R., Estaji, A. & Niknam, F. Effect of iron, zinc and manganese shortage-induced change on photosynthetic pigments, some osmoregulators and chlorophyll fluorescence parameters in lettuce. Photosynthetica 56, 606–615 (2018). https://doi.org/10.1007/s11099-017-0696-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0696-1

Additional key words

Navigation